• search hit 2 of 362
Back to Result List

Análisis neotectónico y lito-tefroestratigráfico de los grandes movimientos en masa asociados al fallamiento activo de la cuenca intermontana Quito-Guayllabamba, Ecuador

Neotectonic and litho-tephrostratigraphic analysis of large mass movements associated with active faulting in the Quito-Guayllabamba intermontane basin, Ecuador

Neotektonische und litho-tephrostratigraphische Auswertung der großen Massenbewegungen im Zusammenhang mit dem aktiven Verwerfungen im intermontanen Quito-Guayllabamba-Becken, Ecuador

  • Dentro de la cuenca intermontana de Quito-Guay llabamba de Ecuador, se han identificado y analizado en este estudio, cinco depósitos coluviales inusualmente grandes de antiguos deslizamientos. El gran deslizamiento rotacional MM-5 Guayllabamba es el más extenso, con un volumen de 1183 millones de m3. Las mega avalanchas de escombros MM-1 Conocoto, MM-3 Oyacoto, y MM-4 San Francisco fueron desencadenadas originalmente por una ruptura inicial que estuvo asociada a un deslizamiento rotacional, los depósitos correspondientes tienen volúmenes entre 399 a 317 millones de m3. Finalmente, el depósito de menor volumen, el deslizamiento rotacional y caída de detritos MM-2 Batán, tiene un volumen de 8,7 millones de m3. En esta tesis, se realizó un estudio detallado de estos grandes movimientos en masa utilizando métodos neotectónicos y lito-tefrostratigráficos para comprender las condiciones geológicas y geomorfológicas de contorno que podrían ser relevantes para desencadenar estos movimientos en masa. La parte neotectónica del estudio se basóDentro de la cuenca intermontana de Quito-Guay llabamba de Ecuador, se han identificado y analizado en este estudio, cinco depósitos coluviales inusualmente grandes de antiguos deslizamientos. El gran deslizamiento rotacional MM-5 Guayllabamba es el más extenso, con un volumen de 1183 millones de m3. Las mega avalanchas de escombros MM-1 Conocoto, MM-3 Oyacoto, y MM-4 San Francisco fueron desencadenadas originalmente por una ruptura inicial que estuvo asociada a un deslizamiento rotacional, los depósitos correspondientes tienen volúmenes entre 399 a 317 millones de m3. Finalmente, el depósito de menor volumen, el deslizamiento rotacional y caída de detritos MM-2 Batán, tiene un volumen de 8,7 millones de m3. En esta tesis, se realizó un estudio detallado de estos grandes movimientos en masa utilizando métodos neotectónicos y lito-tefrostratigráficos para comprender las condiciones geológicas y geomorfológicas de contorno que podrían ser relevantes para desencadenar estos movimientos en masa. La parte neotectónica del estudio se basó en el análisis geomorfológico cualitativo y cuantitativo de estos grandes depósitos de movimientos en masa, a través de la caracterización estructural de anticlinales ubicados al este de la subcuenca de Quito y sus flancos colapsados que constituyen las áreas de ruptura. Esta parte del análisis fue además apoyada por la aplicación de diferentes índices morfométricos para revelar procesos de evolución del paisaje forzados tectónicamente que pueden haber contribuido a la generación de movimientos en masa. La parte lito-tefrostratigráfica del estudio se basó en el análisis de las características petrográficas, geoquímicas y geocronológicas de los horizontes del suelo y de las cenizas volcánicas intercaladas, con el objetivo de restringir la cronología de los eventos individuales de movimientos en masa y su posible de correlación. Los resultados se integraron en esquemas cronoestratigráficos utilizando superficies de ruptura, relaciones transversales y de superposición de depósitos de deslizamiento y estratos posteriores para comprender los movimientos en masa en el contexto tectónico y temporal del entorno de la cuenca intermontana, así como para identificar los mecanismos desencadenantes de cada evento. El movimiento en masa MM-5 Guayllabamba es el resultado del colapso de la ladera suroeste del volcán Mojanda y fue desencadenado por la interacción de condiciones geológicas y morfológicas hace aproximadamente 0,81 Ma. El primer episodio de avalancha de escombros de los movimientos en masa MM-3 Oyacoto y MM-4 San Francisco podría estar relacionado con condiciones tanto geológicas como morfológicas, dadas las rocas altamente fracturadas y el levantamiento del anticlinal Bellavista-Catequilla que posteriormente fue inciso al pie de la ladera por la erosión fluvial. Este primer episodio de colapso probablemente ocurrió alrededor de los 0,8 Ma. El movimiento en masa MM-2 Batán posiblemente también fue desencadenado por una combinación de condiciones geológicas y morfológicas, asociadas a una reducción de los esfuerzos litostáticos que afectaron a las formaciones Chiche y Machángara y a un aumento de los esfuerzos de cizalla durante procesos de socavación fluvial lateral en los flancos de las áreas de origen. Esto apunta a un proceso vinculado entre la erosión fluvial y los procesos de levantamiento asociados a la evolución del anticlinal El Batán-La Bota que podría haber ocurrido entre 0,5 y 0,25 Ma. La voluminosa avalancha de escombros MM-1 Conocoto, así como el segundo episodio de avalancha de escombros que generó los movimientos en masa MM-3 Oyacoto y MM-4 San Francisco, fueron provocados por el colapso gravitacional de las formaciones Mojanda y Cangahua que se caracterizan por la intercalación de cenizas volcánicas. La falla del flanco oriental de los anticlinales probablemente estuvo asociada al incremento de la humedad disponible relacionada con las variaciones climáticas regionales del Holoceno. Los resultados de la cronología de los paleosuelos combinados con los datos cronoestratigráficos y paleoclimáticos regionales sugieren que estas avalanchas de escombros se desencadenaron entre 5 y 4 ka. La tectónica activa ha modelado los rasgos morfológicos de la cuenca intermontana Quito-Guayllabamba. El desencadenamiento de movimientos en masa en este ambiente está asociado a rupturas en litologías del Pleistoceno (sedimentos lacustres, depósitos aluviales y volcánicos) sometidas a procesos de deformación, actividad sísmica y episodios superpuestos de variabilidad climática. El Distrito Metropolitano de Quito es parte integral de este complejo entorno y de las condiciones geológicas, climáticas y topográficas que continúan influyendo en el espacio geográfico urbano dentro de esta cuenca intermontana. La ciudad de Quito comprende el área de mayor consolidación urbana incluyendo las subcuencas de Quito y San Antonio, con una población de 2,872 millones de habitantes, lo que refleja la importancia del estudio de las amenazas geológicas y climáticas inherentes a esta región.show moreshow less
  • Within the Quito-Guayllabamba intermontane basin of Ecuador, five unusually large colluvial deposits of ancient landslides have been identified and analyzed in this study. The voluminous rotational MM-5 Guayllabamba landslide is the largest one, with a volume of 1183 million m3. The mega debris-avalanches MM-1 Conocoto, MM-3 Oyacoto, and MM-4 San Francisco were originally triggered by an initial rupture that was associated with a rotational landslide, the corresponding deposits have volumes between 399 to 317 million m3. Finally, the deposit with the smallest volume, the MM-2 Batán rotational landslide and debris fall, has a volume of 8,7 million m3. In this thesis, a detailed study of these large mass movements was carried out using neotectonic and litho-tephrostratigraphic methods to understand the geological and geomorphological boundary conditions that might have been relevant for triggering such mass movements. The neotectonic part of the study was based on the qualitative and quantitative geomorphic analysis of these largeWithin the Quito-Guayllabamba intermontane basin of Ecuador, five unusually large colluvial deposits of ancient landslides have been identified and analyzed in this study. The voluminous rotational MM-5 Guayllabamba landslide is the largest one, with a volume of 1183 million m3. The mega debris-avalanches MM-1 Conocoto, MM-3 Oyacoto, and MM-4 San Francisco were originally triggered by an initial rupture that was associated with a rotational landslide, the corresponding deposits have volumes between 399 to 317 million m3. Finally, the deposit with the smallest volume, the MM-2 Batán rotational landslide and debris fall, has a volume of 8,7 million m3. In this thesis, a detailed study of these large mass movements was carried out using neotectonic and litho-tephrostratigraphic methods to understand the geological and geomorphological boundary conditions that might have been relevant for triggering such mass movements. The neotectonic part of the study was based on the qualitative and quantitative geomorphic analysis of these large mass-movement deposits through the structural characterization of anticlines located east of the Quito sub-basin and their collapsed flanks that constitute the break-off areas. This part of the analysis was furthermore supported by the application of different morphometric indices to reveal tectonically forced landscape evolution processes that may have aided mass-movement generation. The litho-tephrostratigraphic part of the study was based on the analysis of petrographic, geochemical, and geochronological characteristics of soil horizons and intercalated volcanic ashes with the aim to constrain the timing of individual mass-movement events and their potential correlation. The results were integrated into chronostratigraphic schemes using break-off surfaces, cross-cutting and superposition relationships of landslide deposits and subsequently deposited strata to understand the mass movements in the tectonic and temporal context of the intermontane basin setting, as well as to identify the triggering mechanisms for each event. The MM-5 Guayllabamba mass movement is the result of the collapse of the southwestern slope of the Mojanda volcano and was triggered by the interaction of geologic and morphologic conditions approximately 0,81 Ma. The first debris-avalanche episode of the MM-3 Oyacoto and MM-4 San Francisco mass movements could be related to both geological and morphological conditions, given the highly fractured rocks and uplift of the Bellavista-Catequilla anticline that was subsequently incised at the foot of the slope by fluvial erosion. This first episode of collapse most likely occurred around 0,8 Ma. The MM-2 Batán mass movement was possibly also facilitated by a combination of geological and morphological conditions, most likely associated with a reduction in the lithostatic stresses affecting the Chiche and Machángara formations and an increase of shear stresses during lateral fluvial scouring processes at the flanks of the source areas. This points to a linked process between river erosion and uplift processes associated with the evolution of the El Batán-La Bota anticline that could have occurred between 0,5 and 0,25 Ma. The voluminous MM-1 Conocoto debris avalanche, as well as the second debris avalanche episode that generated the MM-3 Oyacoto and MM-4 San Francisco mass movements, were caused by the gravitational collapse of the Mojanda and Cangahua formations that are characterized by the intercalation of volcanic ashes. The failure of the eastern flank of the anticlines probably was associated with increased available humidity related to regional Holocene climatic variations. The results of paleosol chronology combined with regional chronostratigraphic and paleoclimate data suggests that these debris avalanches were triggered between 5 and 4 ka. Active tectonics has shaped the morphological features of the Quito-Guayllabamba intermontane basin. The triggering of mass movements in this environment is associated with failure of Pleistocene lithologies (lake sediments, alluvial and volcanic deposits) subjected to ongoing deformation processes, seismic activity, and superposed episodes of climate variability. The Metropolitan District of Quito is an integral part of this complex environment and the geological, climatic, and topographic conditions that continue to influence the urban geographic space within this intermontane basin. The city of Quito comprises the area with the largest urban consolidation including the sub-basins of Quito and San Antonio, with a population of 2,872 million inhabitants, reflecting the importance of studying the inherent geological and climatic hazards that this region is confronted with.show moreshow less
  • Innerhalb des intermontanen Beckens von Quito-Guayllabamba in Ecuador wurden fünf ungewöhnlich große alte Erdrutschablagerungen identifiziert und in dieser Studie analysiert. Die voluminöse, mit einer Rotationsbewegung verbundene Ablagerung MM-5 von Guayllabamba ist mit einem Volumen von 1183 Mio. m3 die größte dieser Massenbewegungsablagerungen. Die Megaschuttlawinen MM-1 von Conocoto, MM-3 Oyacoto und MM-4 von San Francisco wurden ursprünglich durch eine Ruptur an den oberen Hängen ausgelöst, die ebenfalls mit Rotationsbewegungen verbunden waren, die entsprechenden Ablagerungen haben ein Volumen zwischen 399 und 317 Mio. m3. Die kleinste Ablagerung, die Ablagerung MM-2 von Batán, hat ein Volumen von 8,7 Mio. m3. In dieser Arbeit wurde eine detaillierte Untersuchung dieser großen Massenbewegungen mit neotektonischen, litho-tephrostratigraphischen und geomorphologischen Methoden durchgeführt, um die geologischen und geomorphologischen Randbedingungen zu verstehen, die für die Auslösung solcher Massenbewegungen relevant gewesen seinInnerhalb des intermontanen Beckens von Quito-Guayllabamba in Ecuador wurden fünf ungewöhnlich große alte Erdrutschablagerungen identifiziert und in dieser Studie analysiert. Die voluminöse, mit einer Rotationsbewegung verbundene Ablagerung MM-5 von Guayllabamba ist mit einem Volumen von 1183 Mio. m3 die größte dieser Massenbewegungsablagerungen. Die Megaschuttlawinen MM-1 von Conocoto, MM-3 Oyacoto und MM-4 von San Francisco wurden ursprünglich durch eine Ruptur an den oberen Hängen ausgelöst, die ebenfalls mit Rotationsbewegungen verbunden waren, die entsprechenden Ablagerungen haben ein Volumen zwischen 399 und 317 Mio. m3. Die kleinste Ablagerung, die Ablagerung MM-2 von Batán, hat ein Volumen von 8,7 Mio. m3. In dieser Arbeit wurde eine detaillierte Untersuchung dieser großen Massenbewegungen mit neotektonischen, litho-tephrostratigraphischen und geomorphologischen Methoden durchgeführt, um die geologischen und geomorphologischen Randbedingungen zu verstehen, die für die Auslösung solcher Massenbewegungen relevant gewesen sein könnten. Der neotektonische Teil der Studie basierte auf der qualitativen und quantitativen geomorphologischen Analyse dieser voluminösen Ablagerungen über eine strukturelle Charakterisierung der Antiklinalen und ihrer kollabierten Flanken östlich des Quito-Subbbeckens, die Abrisszonen bilden. Dieser Teil der Analyse wurde durch die Anwendung verschiedener morphometrischer Indizes unterstützt, um tektonisch bedingte Landschaftsentwicklungsprozesse aufzuzeigen, welche die Entstehung der Massenbewegungen begünstigt haben könnten. Der litho-tephrostratigraphische Teil der Studie basierte auf der Analyse petrographischer, geochemischer und geochronologischer Merkmale von Paläo-Bodenhorizonten und zwischengeschalteten vulkanischen Aschen mit dem Ziel, die Chronologie einzelner Massenbewegungsereignisse zunächst einzugrenzen und Ablagerungen eventuell miteinander zu korrelieren. Die Ergebnisse wurden in chronostratigraphische Schemata integriert, die Abrisskanten, Aufschlüsse und stratigraphische Überlappungsbeziehungen von Erdrutschablagerungen und später abgelagerten Schichten verwenden, um die Massenbewegungen im tektonischen und zeitlichen Kontext der intermontanen, sowie die Auslösemechanismen der einzelnen Ereignisse zu identifizieren. Die Massenbewegung MM-5 von Guayllabamba ist das Ergebnis des Kollapses des Südwesthangs des Vulkans Mojanda und wurde durch das Zusammenspiel geologischer und morphologischer Bedingungen vor etwa 0,81 Ma ausgelöst. Die erste Schuttlawinen-Episode MM-3 Oyacoto und MM-4 San Francisco könnte sowohl mit den geologischen als auch mit den morphologischen Bedingungen zusammenhängen, da das Gestein stark zerklüftet ist und die Bellavista-Catequilla-Antiklinale angehoben wurde, die anschließend am Fuß des Hanges durch fluviale Erosion eingeschnitten wurde. Höchstwahrscheinlich ereignete sich diese erste Massenbewegungsphase um 0,8 Ma. Die Massenbewegung der Ablagerung von MM-2 Batán wurde möglicherweise auch durch eine Kombination von geologischen und morphologischen Bedingungen begünstigt, die vermutlich mit einer Verringerung des lithostatischen Druckes in den Formationen Chiche und Machángara sowie einer Zunahme der Scherspannungen im Zuge der seitlichen fluvialen Kolkprozesse an den Flanken der Abrissregionen verbunden waren. Dies deutet auf einen verknüpften Prozess zwischen fluvialer Erosion und Hebungsprozessen im Zusammenhang mit der Entwicklung der El Batán-La Bota-Antiklinale hin, der zwischen 0,5 und 0,25 Ma stattgefunden haben könnte. Die voluminöse Schuttlawine MM-1 von Conocoto sowie die zweite Schuttlawine, welche die Ablagerungen von MM-3 Oyacoto und MM-4 San Francisco generierte, wurden durch den gravitativen Kollaps der Mojanda- und Cangahua-Formationen ausgelöst, der durch die zwischengeschalteten vulkanischen Aschen begünstigt wurde. Das Versagen der Bergflanken war möglicherweise auch begünstigt durch die Zunahme der verfügbaren Feuchtigkeit und des erhöhten Porendruckes im Zusammenhang mit regionalen klimatischen Schwankungen während des Holozäns. Die Ergebnisse der Chronologie der Paläoböden in Verbindung mit regionalen chronostratigraphischen und paläoklimatischen Daten legen nahe, dass diese Schuttlawinen zwischen 5 und 4 ka ausgelöst wurden. Die aktive Tektonik hat die morphologischen Merkmale des intermontanen Quito-Guayllabamba-Beckens fundamental geprägt. Die Auslösung von Massenbewegungen in diesem Gebiet steht im Zusammenhang mit Verwerfungen in den pleistozänen Ablagerungen (lakustrische Sedimente, alluviale und vulkanische Ablagerungen), die laufenden Deformationsprozessen, seismischer Aktivität sowie überlagerten Episoden klimatischer Variabilität ausgesetzt sind. Der Stadtbezirk Quito ist ein integraler Bestandteil dieser komplexen Region und der geologischen, klimatischen und topografischen Bedingungen, die den städtischen Siedlungsraum in diesem intermontanen Becken weiterhin beeinflussen werden. Die Stadt Quito umfasst das Gebiet mit der größten urbanen Konsolidierung, einschließlich der Teileinzugsgebiete von Quito und San Antonio, mit einer Bevölkerung von 2,872 Millionen Einwohnern, was die Bedeutung der Untersuchung der inhärenten geologischen und klimatischen Gefahren widerspiegelt, mit denen diese Region konfrontiert ist.show moreshow less

Download full text files

  • SHA-512:Le6672ed51028802da47691847f1eb69b98b201aff52b2805c44eb11f873e6126b79dec1766f2c90da28292b0cb6c5df209da78860ab0220a3daff249a266e250

Export metadata

Metadaten
Author details:Eliana Jiménez ÁlvaroORCiDGND
URN:urn:nbn:de:kobv:517-opus4-622209
DOI:https://doi.org/10.25932/publishup-62220
Supervisor(s):Manfred Strecker, Adolfo Antonio Gutiérrez, Isabel Carolina Bernal
Publication type:Doctoral Thesis
Language:Spanish
Publication year:2023
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2023/11/02
Contributing corporation:Universidad Nacional de Tucumán
Release date:2024/03/21
Tag:Auslösemechanismus; Klima; aktive Verwerfungen; große Massenbewegungen; intermontane Becken
active faulting; climate; intermontane basin; large mass movements; trigger mechanism
clima; cuenca intermontana; fallamiento activo; grandes movimientos en masa; mecanismos de disparo
Number of pages:195
RVK - Regensburg classification:TG 4600, TG 4900, TP 8850
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.