• search hit 2 of 9
Back to Result List

Response of nodularia spumigena to pCO(2) - Part 1: Growth, production and nitrogen cycling

  • Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2) concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C) and dinitrogen (N-2) fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 mu atm), mid (median 353 mu atm), and high (median 548 mu atm) CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO(2) on C and N-2 fixation, as well as on cell growth. An increase in pCO(2) during incubation days 0 to 9Heterocystous cyanobacteria of the genus Nodularia form extensive blooms in the Baltic Sea and contribute substantially to the total annual primary production. Moreover, they dispense a large fraction of new nitrogen to the ecosystem when inorganic nitrogen concentration in summer is low. Thus, it is of ecological importance to know how Nodularia will react to future environmental changes, in particular to increasing carbon dioxide (CO2) concentrations and what consequences there might arise for cycling of organic matter in the Baltic Sea. Here, we determined carbon (C) and dinitrogen (N-2) fixation rates, growth, elemental stoichiometry of particulate organic matter and nitrogen turnover in batch cultures of the heterocystous cyanobacterium Nodularia spumigena under low (median 315 mu atm), mid (median 353 mu atm), and high (median 548 mu atm) CO2 concentrations. Our results demonstrate an overall stimulating effect of rising pCO(2) on C and N-2 fixation, as well as on cell growth. An increase in pCO(2) during incubation days 0 to 9 resulted in an elevation in growth rate by 84 +/- 38% (low vs. high pCO(2)) and 40 +/- 25% (mid vs. high pCO(2)), as well as in N-2 fixation by 93 +/- 35% and 38 +/- 1%, respectively. C uptake rates showed high standard deviations within treatments and in between sampling days. Nevertheless, C fixation in the high pCO(2) treatment was elevated compared to the other two treatments by 97% (high vs. low) and 44% (high vs. mid) at day 0 and day 3, but this effect diminished afterwards. Additionally, elevation in carbon to nitrogen and nitrogen to phosphorus ratios of the particulate biomass formed (POC : POP and PON : POP) was observed at high pCO(2). Our findings suggest that rising pCO(2) stimulates the growth of heterocystous diazotrophic cyanobacteria, in a similar way as reported for the non-heterocystous diazotroph Trichodesmium. Implications for biogeochemical cycling and food web dynamics, as well as ecological and socio-economical aspects in the Baltic Sea are discussed.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Nicola Wannicke, S. Endres, A. Engel, Hans-Peter GrossartORCiDGND, M. Nausch, J. Unger, Martin Voss
DOI:https://doi.org/10.5194/bg-9-2973-2012
ISSN:1726-4170
Title of parent work (English):Biogeosciences
Publisher:Copernicus
Place of publishing:Göttingen
Publication type:Preprint
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Volume:9
Issue:8
Number of pages:16
First page:2973
Last Page:2988
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Publishing method:Open Access
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.