• search hit 1 of 1
Back to Result List

5,10-A2B2-Type meso-Substituted PorphyrinsuA Unique Class of Porphyrins with a Realigned Dipole Moment

  • Current applications in porphyrin chemistry require the use of unsymmetrically substituted porphyrins. Many current industrial interests in optics and biomedicine require systems with either pushpull (electron-donating and -withdrawing groups) or amphiphilic systems (hydrophobic and hydrophilic groups). In this context we present the class of 5,10-A2B2-type porphyrins for which two different substituents are positioned in diagonally opposite meso positions. Thus, the intramolecular dipole moment in these tetrapyrroles is positioned along a beta-beta vector passing through two pyrrole rings. This is opposite to the situation of the frequently used 5,15-A2BC porphyrins for which the dipole moment is oriented along a mesomeso axis. We have elaborated syntheses of the 5,10-A2B2 porphyrins by using transition-metal-catalyzed transformations of 5,10-A2 porphyrins or direct substitutions reactions thereof; this gives the target molecules in 2277% overall yields. The compounds exhibit interesting structural, spectroscopic, and opticalCurrent applications in porphyrin chemistry require the use of unsymmetrically substituted porphyrins. Many current industrial interests in optics and biomedicine require systems with either pushpull (electron-donating and -withdrawing groups) or amphiphilic systems (hydrophobic and hydrophilic groups). In this context we present the class of 5,10-A2B2-type porphyrins for which two different substituents are positioned in diagonally opposite meso positions. Thus, the intramolecular dipole moment in these tetrapyrroles is positioned along a beta-beta vector passing through two pyrrole rings. This is opposite to the situation of the frequently used 5,15-A2BC porphyrins for which the dipole moment is oriented along a mesomeso axis. We have elaborated syntheses of the 5,10-A2B2 porphyrins by using transition-metal-catalyzed transformations of 5,10-A2 porphyrins or direct substitutions reactions thereof; this gives the target molecules in 2277% overall yields. The compounds exhibit interesting structural, spectroscopic, and optical features and can serve as building blocks for new porphyrin arrays and applications.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Mathias O. Senge, Claudia Ryppa, Marijana Fazekas, Monika Zawadzka, Katja Dahms
DOI:https://doi.org/10.1002/chem.201101934
ISSN:0947-6539
Title of parent work (English):Chemistry - a European journal
Publisher:Wiley-VCH
Place of publishing:Weinheim
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Tag:macrocycles; nitrogen heterocycles; nonlinear optics; porphyrinoids; tetrapyrroles
Volume:17
Issue:48
Number of pages:12
First page:13562
Last Page:13573
Funding institution:Science Foundation Ireland [09/IN.1/B2650]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.