• search hit 1 of 7
Back to Result List

Pluvial flood loss to private households

Schäden durch urbane Sturzfluten in Privathaushalten

  • Today, more than half of the world’s population lives in urban areas. With a high density of population and assets, urban areas are not only the economic, cultural and social hubs of every society, they are also highly susceptible to natural disasters. As a consequence of rising sea levels and an expected increase in extreme weather events caused by a changing climate in combination with growing cities, flooding is an increasing threat to many urban agglomerations around the globe. To mitigate the destructive consequences of flooding, appropriate risk management and adaptation strategies are required. So far, flood risk management in urban areas is almost exclusively focused on managing river and coastal flooding. Often overlooked is the risk from small-scale rainfall-triggered flooding, where the rainfall intensity of rainstorms exceeds the capacity of urban drainage systems, leading to immediate flooding. Referred to as pluvial flooding, this flood type exclusive to urban areas has caused severe losses in cities around the world.Today, more than half of the world’s population lives in urban areas. With a high density of population and assets, urban areas are not only the economic, cultural and social hubs of every society, they are also highly susceptible to natural disasters. As a consequence of rising sea levels and an expected increase in extreme weather events caused by a changing climate in combination with growing cities, flooding is an increasing threat to many urban agglomerations around the globe. To mitigate the destructive consequences of flooding, appropriate risk management and adaptation strategies are required. So far, flood risk management in urban areas is almost exclusively focused on managing river and coastal flooding. Often overlooked is the risk from small-scale rainfall-triggered flooding, where the rainfall intensity of rainstorms exceeds the capacity of urban drainage systems, leading to immediate flooding. Referred to as pluvial flooding, this flood type exclusive to urban areas has caused severe losses in cities around the world. Without further intervention, losses from pluvial flooding are expected to increase in many urban areas due to an increase of impervious surfaces compounded with an aging drainage infrastructure and a projected increase in heavy precipitation events. While this requires the integration of pluvial flood risk into risk management plans, so far little is known about the adverse consequences of pluvial flooding due to a lack of both detailed data sets and studies on pluvial flood impacts. As a consequence, methods for reliably estimating pluvial flood losses, needed for pluvial flood risk assessment, are still missing. Therefore, this thesis investigates how pluvial flood losses to private households can be reliably estimated, based on an improved understanding of the drivers of pluvial flood loss. For this purpose, detailed data from pluvial flood-affected households was collected through structured telephone- and web-surveys following pluvial flood events in Germany and the Netherlands. Pluvial flood losses to households are the result of complex interactions between impact characteristics such as the water depth and a household’s resistance as determined by its risk awareness, preparedness, emergency response, building properties and other influencing factors. Both exploratory analysis and machine-learning approaches were used to analyze differences in resistance and impacts between households and their effects on the resulting losses. The comparison of case studies showed that the awareness around pluvial flooding among private households is quite low. Low awareness not only challenges the effective dissemination of early warnings, but was also found to influence the implementation of private precautionary measures. The latter were predominately implemented by households with previous experience of pluvial flooding. Even cases where previous flood events affected a different part of the same city did not lead to an increase in preparedness of the surveyed households, highlighting the need to account for small-scale variability in both impact and resistance parameters when assessing pluvial flood risk. While it was concluded that the combination of low awareness, ineffective early warning and the fact that only a minority of buildings were adapted to pluvial flooding impaired the coping capacities of private households, the often low water levels still enabled households to mitigate or even prevent losses through a timely and effective emergency response. These findings were confirmed by the detection of loss-influencing variables, showing that cases in which households were able to prevent any loss to the building structure are predominately explained by resistance variables such as the household’s risk awareness, while the degree of loss is mainly explained by impact variables. Based on the important loss-influencing variables detected, different flood loss models were developed. Similar to flood loss models for river floods, the empirical data from the preceding data collection was used to train flood loss models describing the relationship between impact and resistance parameters and the resulting loss to building structures. Different approaches were adapted from river flood loss models using both models with the water depth as only predictor for building structure loss and models incorporating additional variables from the preceding variable detection routine. The high predictive errors of all compared models showed that point predictions are not suitable for estimating losses on the building level, as they severely impair the reliability of the estimates. For that reason, a new probabilistic framework based on Bayesian inference was introduced that is able to provide predictive distributions instead of single loss estimates. These distributions not only give a range of probable losses, they also provide information on how likely a specific loss value is, representing the uncertainty in the loss estimate. Using probabilistic loss models, it was found that the certainty and reliability of a loss estimate on the building level is not only determined by the use of additional predictors as shown in previous studies, but also by the choice of response distribution defining the shape of the predictive distribution. Here, a mix between a beta and a Bernoulli distribution to account for households that are able to prevent losses to their building’s structure was found to provide significantly more certain and reliable estimates than previous approaches using Gaussian or non-parametric response distributions. The successful model transfer and post-event application to estimate building structure loss in Houston, TX, caused by pluvial flooding during Hurricane Harvey confirmed previous findings, and demonstrated the potential of the newly developed multi-variable beta model for future risk assessments. The highly detailed input data set constructed from openly available data sources containing over 304,000 affected buildings in Harris County further showed the potential of data-driven, building-level loss models for pluvial flood risk assessment. In conclusion, pluvial flood losses to private households are the result of complex interactions between impact and resistance variables, which should be represented in loss models. The local occurrence of pluvial floods requires loss estimates on high spatial resolutions, i.e. on the building level, where losses are variable and uncertainties are high. Therefore, probabilistic loss estimates describing the uncertainty of the estimate should be used instead of point predictions. While the performance of probabilistic models on the building level are mainly driven by the choice of response distribution, multi-variable models are recommended for two reasons: First, additional resistance variables improve the detection of cases in which households were able to prevent structural losses. Second, the added variability of additional predictors provides a better representation of the uncertainties when loss estimates from multiple buildings are aggregated. This leads to the conclusion that data-driven probabilistic loss models on the building level allow for a reliable loss estimation at an unprecedented level of detail, with a consistent quantification of uncertainties on all aggregation levels. This makes the presented approach suitable for a wide range of applications, from decision support in spatial planning to impact- based early warning systems.show moreshow less
  • Über die Hälfte der Weltbevölkerung lebt heute in Städten. Mit einer hohen Dichte an Menschen, Gütern und Gebäuden sind Städte nicht nur die wirtschaftlichen, politischen und kulturellen Zentren einer Gesellschaft, sondern auch besonders anfällig gegenüber Naturkatastrophen. Insbesondere Hochwasser und Überflutungen stellen in Folge von steigenden Meeresspiegeln und einer erwarteten Zunahme von Extremwettereignissen eine wachsende Bedrohung in vielen Regionen dar. Um die möglichen Folgen dieser Entwicklung zu vermeiden bzw. zu reduzieren, ist es notwendig sich der steigenden Gefahr durch geeignete Maßnahmen anzupassen. Bisher ist der Hochwasserschutz in Städten beinahe ausschließlich auf Überflutungen durch Flusshochwasser oder Sturmfluten fokussiert. Dabei werden sogenannte urbane Sturzfluten, die in den letzten Jahren vermehrt zu hohen Schäden in Städten geführt haben, nicht berücksichtigt. Bei urbanen Sturzfluten führen lokale Starkniederschläge mit hohen Regenmengen zu einer Überlastung des städtischen Abwassersystems und damitÜber die Hälfte der Weltbevölkerung lebt heute in Städten. Mit einer hohen Dichte an Menschen, Gütern und Gebäuden sind Städte nicht nur die wirtschaftlichen, politischen und kulturellen Zentren einer Gesellschaft, sondern auch besonders anfällig gegenüber Naturkatastrophen. Insbesondere Hochwasser und Überflutungen stellen in Folge von steigenden Meeresspiegeln und einer erwarteten Zunahme von Extremwettereignissen eine wachsende Bedrohung in vielen Regionen dar. Um die möglichen Folgen dieser Entwicklung zu vermeiden bzw. zu reduzieren, ist es notwendig sich der steigenden Gefahr durch geeignete Maßnahmen anzupassen. Bisher ist der Hochwasserschutz in Städten beinahe ausschließlich auf Überflutungen durch Flusshochwasser oder Sturmfluten fokussiert. Dabei werden sogenannte urbane Sturzfluten, die in den letzten Jahren vermehrt zu hohen Schäden in Städten geführt haben, nicht berücksichtigt. Bei urbanen Sturzfluten führen lokale Starkniederschläge mit hohen Regenmengen zu einer Überlastung des städtischen Abwassersystems und damit zu einer direkten, oft kleinräumigen Überflutung innerhalb eines bebauten Gebiets. Mit einer prognostizierten Zunahme von Starkniederschlägen, sowie einer baulichen Verdichtung und damit einhergehender Flächenversiegelung in vielen Städten, ist mit einer Zunahme von urbanen Sturzfluten zu rechnen. Dies verlangt die Einbindung des Risikos durch urbane Sturzfluten in bestehende Hochwasserschutzkonzepte. Bisher fehlen allerdings sowohl detaillierte Daten als auch Methoden um das Risiko durch urbane Sturzfluten und die dadurch verursachten Schäden, etwa an Wohngebäuden, zuverlässig abzuschätzen. Aus diesem Grund beschäftigt sich diese Arbeit hauptsächlich mit der Entwicklung von Verfahren und Modellen zur Abschätzung von Schäden an Privathaushalten durch urbane Sturzfluten. Dazu wurden detaillierte Daten durch Telefon- und Online-Umfragen nach urbanen Sturzflutereignissen in Deutschland und in den Niederlanden erhoben und ausgewertet. Die Erkenntnisse aus den detaillierten Analysen zu Vorsorge, Notmaßnahmen und Wiederherstellung, vor, während und nach urbanen Sturzflutereignissen, wurden genutzt um eine neue Methode zur Schätzung von Schäden an Wohngebäuden zu entwickeln. Dabei werden neben Angaben wie Dauer und Höhe der Überflutung, auch Eigenschaften von Haushalten, wie etwa deren Risikobewusstsein, in die Schätzung miteinbezogen. Nach lokaler Validierung wurde die neuentwickelte Methode beispielhaft zur Schätzung von Wohngebäudeschäden nach einem urbanen Sturzflutereignis im Großraum Houston (Texas, USA) erfolgreich angewendet. Anders als bei bisherigen Ansätzen wird der geschätzte Schaden eines Wohngebäudes nicht als einzelner Wert angegeben, sondern als Verteilung, welche die Bandbreite möglicher Schäden und deren Wahrscheinlichkeit angibt. Damit konnte die Zuverlässigkeit von Schadensschätzungen im Vergleich zu bisherigen Verfahren erheblich verbessert werden. Durch die erfolgreiche Anwendung sowohl auf der Ebene einzelner Gebäude als auch für gesamte Städte, ergibt sich ein breites Spektrum an Nutzungsmöglichkeiten, etwa als Entscheidungsunterstützung in der Stadtplanung oder für eine verbesserte Frühwarnung vor urbanen Sturzfluten.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Viktor RözerORCiD
URN:urn:nbn:de:kobv:517-opus4-429910
DOI:https://doi.org/10.25932/publishup-42991
Referee:Bruno MerzORCiDGND, Heidi KreibichORCiDGND, Chris ZevenbergenORCiD
Advisor:Bruno Merz, Heidi Kreibich
Document Type:Doctoral Thesis
Language:English
Year of Completion:2018
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2019/05/09
Release Date:2019/06/24
Tag:Privathaushalte; Schadensmodellierung; Starkregen; Unsicherheiten
damage modeling; economic impacts; pluvial flooding; private households; probabilistic; uncertainty
Pagenumber:XXII, 109
Organizational units:Extern
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht