The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 40788 of 40911
Back to Result List

Noise-induced transitions and resonant effects in nonlinear systems

-

  • Our every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold oneOur every-day experience is connected with different acoustical noise or music. Usually noise plays the role of nuisance in any communication and destroys any order in a system. Similar optical effects are known: strong snowing or raining decreases quality of a vision. In contrast to these situations noisy stimuli can also play a positive constructive role, e.g. a driver can be more concentrated in a presence of quiet music. Transmission processes in neural systems are of especial interest from this point of view: excitation or information will be transmitted only in the case if a signal overcomes a threshold. Dr. Alexei Zaikin from the Potsdam University studies noise-induced phenomena in nonlinear systems from a theoretical point of view. Especially he is interested in the processes, in which noise influences the behaviour of a system twice: if the intensity of noise is over a threshold, it induces some regular structure that will be synchronized with the behaviour of neighbour elements. To obtain such a system with a threshold one needs one more noise source. Dr. Zaikin has analyzed further examples of such doubly stochastic effects and developed a concept of these new phenomena. These theoretical findings are important, because such processes can play a crucial role in neurophysics, technical communication devices and living sciences.show moreshow less
  • Unsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich erwiesen. Außerordentlich interessant aus dieser Sicht sind auch Reizleitungsprozesse: Reize werden nur weitergleitet, wenn die strukturlosen Signale der Neuronen mit ausreichend starker Intensität erfolgen, also ein Schwellwert überschritten ist. Der Physiker Dr. Alexei Zaikin von der Universität Potsdam beschäftigt sich mit sogenannten rauschinduzierten Phänomenen aus theorischer Sicht. Sein Forschungsgebiet sindUnsere alltägliche Erfahrung ist mit verschiedenen akustischen Einfluessen wie Lärm, aber auch Musik verbunden. Jeder weiss, wie Lärm stören kann und Kommunikation behindert oder gar unterbindet. Ähnliche optische Effekte sind bekannt: starkes Schneetreiben oder Regengüsse verschlechtern die Sicht und lassen uns Umrisse nur noch schemenhaft erkennen. Jedoch koennen ähnliche Stimuli auch sehr positive Auswirkungen haben: Autofahrer fahren bei leiser Musik konzentrierter -- die Behauptung von Schulkindern, nur bei dröhnenden Bässen die Mathehausaufgaben richtig rechnen zu können, ist allerdings nicht wissenschaftlich erwiesen. Außerordentlich interessant aus dieser Sicht sind auch Reizleitungsprozesse: Reize werden nur weitergleitet, wenn die strukturlosen Signale der Neuronen mit ausreichend starker Intensität erfolgen, also ein Schwellwert überschritten ist. Der Physiker Dr. Alexei Zaikin von der Universität Potsdam beschäftigt sich mit sogenannten rauschinduzierten Phänomenen aus theorischer Sicht. Sein Forschungsgebiet sind Prozesse, bei denen Rauschen mehrfach das Systemverhalten beeinflusst: ist es ausreichend gross, d.h. größer als ein kritischer Wert, wird eine reguläre Struktur gebildet, die durch das immernoch vorhandene Rauschen mit der Struktur des Nachbarsystems synchronisiert. Um ein solches System mit kritischem Wert zu erhalten, bedarf es einer weiteren Rauschquelle. Herr Zaikin analysierte noch weitere Beispiele solcher doppelt stochastischen Effekte. Die Ausarbeitung derartiger theoretischer Grundlagen ist wichtig, da diese Prozesse in der Neurophysik, in technischen Kommunikationssystemen und in den Lebenswissenschaften eine Rolle spielen.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Alexei Zaikin
URN:urn:nbn:de:kobv:517-0000761
Title Additional (English):Noise-induced transitions and resonant effects in nonlinear systems
Advisor:Lutz Schimansky-Geier, Jordi Garcia-Ojalvo, Jürgen Kurths
Document Type:Habilitation
Language:English
Year of Completion:2002
Publishing Institution:Universität Potsdam
Date of final exam:2003/02/13
Release Date:2005/02/10
Tag:Rauschen; Rauschinduzierte Phänomene; Stochastische Prozesse; Stochastische Resonanz
Noise-induced phenomena; noise; stochastic processes; stochastic resonance
RVK - Regensburg Classification:UG 1080
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik