The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 40713 of 40911
Back to Result List

Phase synchronization of chaotic systems : from theory to experimental applications

  • In a classical context, synchronization means adjustment of rhythms of self-sustained periodic oscillators due to their weak interaction. The history of synchronization goes back to the 17th century when the famous Dutch scientist Christiaan Huygens reported on his observation of synchronization of pendulum clocks: when two such clocks were put on a common support, their pendula moved in a perfect agreement. In rigorous terms, it means that due to coupling the clocks started to oscillate with identical frequencies and tightly related phases. Being, probably, the oldest scientifically studied nonlinear effect, synchronization was understood only in 1920-ies when E. V. Appleton and B. Van der Pol systematically - theoretically and experimentally - studied synchronization of triode generators. Since that the theory was well developed and found many applications. Nowadays it is well-known that certain systems, even rather simple ones, can exhibit chaotic behaviour. It means that their rhythms are irregular, and cannot be characterizedIn a classical context, synchronization means adjustment of rhythms of self-sustained periodic oscillators due to their weak interaction. The history of synchronization goes back to the 17th century when the famous Dutch scientist Christiaan Huygens reported on his observation of synchronization of pendulum clocks: when two such clocks were put on a common support, their pendula moved in a perfect agreement. In rigorous terms, it means that due to coupling the clocks started to oscillate with identical frequencies and tightly related phases. Being, probably, the oldest scientifically studied nonlinear effect, synchronization was understood only in 1920-ies when E. V. Appleton and B. Van der Pol systematically - theoretically and experimentally - studied synchronization of triode generators. Since that the theory was well developed and found many applications. Nowadays it is well-known that certain systems, even rather simple ones, can exhibit chaotic behaviour. It means that their rhythms are irregular, and cannot be characterized only by one frequency. However, as is shown in the Habilitation work, one can extend the notion of phase for systems of this class as well and observe their synchronization, i.e., agreement of their (still irregular!) rhythms: due to very weak interaction there appear relations between the phases and average frequencies. This effect, called phase synchronization, was later confirmed in laboratory experiments of other scientific groups. Understanding of synchronization of irregular oscillators allowed us to address important problem of data analysis: how to reveal weak interaction between the systems if we cannot influence them, but can only passively observe, measuring some signals. This situation is very often encountered in biology, where synchronization phenomena appear on every level - from cells to macroscopic physiological systems; in normal states as well as in severe pathologies. With our methods we found that cardiovascular and respiratory systems in humans can adjust their rhythms; the strength of their interaction increases with maturation. Next, we used our algorithms to analyse brain activity of Parkinsonian patients. The results of this collaborative work with neuroscientists show that different brain areas synchronize just before the onset of pathological tremor. Morevoever, we succeeded in localization of brain areas responsible for tremor generation.show moreshow less
  • In einem klassischen Kontext bedeutet Synchronisierung die Anpassung der Rhythmen von selbst-erregten periodischen Oszillatoren aufgrund ihrer schwachen Wechselwirkung. Der Begriff der Synchronisierung geht auf den berühmten niederläandischen Wissenschaftler Christiaan Huygens im 17. Jahrhundert zurück, der über seine Beobachtungen mit Pendeluhren berichtete. Wenn zwei solche Uhren auf der selben Unterlage plaziert wurden, schwangen ihre Pendel in perfekter Übereinstimmung. Mathematisch bedeutet das, daß infolge der Kopplung, die Uhren mit gleichen Frequenzen und engverwandten Phasen zu oszillieren begannen. Als wahrscheinlich ältester beobachteter nichtlinearer Effekt wurde die Synchronisierung erst nach den Arbeiten von E. V. Appleton und B. Van der Pol gegen 1920 verstanden, die die Synchronisierung in Triodengeneratoren systematisch untersucht haben. Seitdem wurde die Theorie gut entwickelt, und hat viele Anwendungen gefunden. Heutzutage weiss man, dass bestimmte, sogar ziemlich einfache, Systeme, ein chaotisches VerhaltenIn einem klassischen Kontext bedeutet Synchronisierung die Anpassung der Rhythmen von selbst-erregten periodischen Oszillatoren aufgrund ihrer schwachen Wechselwirkung. Der Begriff der Synchronisierung geht auf den berühmten niederläandischen Wissenschaftler Christiaan Huygens im 17. Jahrhundert zurück, der über seine Beobachtungen mit Pendeluhren berichtete. Wenn zwei solche Uhren auf der selben Unterlage plaziert wurden, schwangen ihre Pendel in perfekter Übereinstimmung. Mathematisch bedeutet das, daß infolge der Kopplung, die Uhren mit gleichen Frequenzen und engverwandten Phasen zu oszillieren begannen. Als wahrscheinlich ältester beobachteter nichtlinearer Effekt wurde die Synchronisierung erst nach den Arbeiten von E. V. Appleton und B. Van der Pol gegen 1920 verstanden, die die Synchronisierung in Triodengeneratoren systematisch untersucht haben. Seitdem wurde die Theorie gut entwickelt, und hat viele Anwendungen gefunden. Heutzutage weiss man, dass bestimmte, sogar ziemlich einfache, Systeme, ein chaotisches Verhalten ausüben können. Dies bedeutet, dass ihre Rhythmen unregelmäßig sind und nicht durch nur eine einzige Frequenz charakterisiert werden können. Wie in der Habilitationsarbeit gezeigt wurde, kann man jedoch den Begriff der Phase und damit auch der Synchronisierung auf chaotische Systeme ausweiten. Wegen ihrer sehr schwachen Wechselwirkung treten Beziehungen zwischen den Phasen und den gemittelten Frequenzen auf und führen damit zur Übereinstimmung der immer noch unregelmäßigen Rhythmen. Dieser Effekt, sogenannter Phasensynchronisierung, konnte später in Laborexperimenten anderer wissenschaftlicher Gruppen bestätigt werden. Das Verständnis der Synchronisierung unregelmäßiger Oszillatoren erlaubte es uns, wichtige Probleme der Datenanalyse zu untersuchen. Ein Hauptbeispiel ist das Problem der Identifikation schwacher Wechselwirkungen zwischen Systemen, die nur eine passive Messung erlauben. Diese Situation trifft häufig in lebenden Systemen auf, wo Synchronisierungsphänomene auf jedem Niveau erscheinen - auf der Ebene von Zellen bis hin zu makroskopischen physiologischen Systemen; in normalen Zuständen und auch in Zuständen ernster Pathologie. Mit unseren Methoden konnten wir eine Anpassung in den Rhythmen von Herz-Kreislauf und Atmungssystem in Menschen feststellen, wobei der Grad ihrer Interaktion mit der Reifung zunimmt. Weiterhin haben wir unsere Algorithmen benutzt, um die Gehirnaktivität von an Parkinson Erkrankten zu analysieren. Die Ergebnisse dieser Kollaboration mit Neurowissenschaftlern zeigen, dass sich verschiedene Gehirnbereiche genau vor Beginn des pathologischen Zitterns synchronisieren. Außerdem gelang es uns, die für das Zittern verantwortliche Gehirnregion zu lokalisieren.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Michael Rosenblum
URN:urn:nbn:de:kobv:517-0000682
Document Type:Habilitation
Language:English
Year of Completion:2003
Publishing Institution:Universität Potsdam
Release Date:2005/02/11
Tag:Chaotische Dynamik; Datenanalyse; Phase; Synchronization
Chaotic dynamics; data analysis; phase; synchronization
RVK - Regensburg Classification:UG 1080
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik