The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 29 of 2166
Back to Result List

Roads at risk

  • Globalisation and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g. road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load, expressed as vehicle kilometres, because of debris-flow-related road closures. We present twoGlobalisation and interregional exchange of people, goods, and services has boosted the importance of and reliance on all kinds of transport networks. The linear structure of road networks is especially sensitive to natural hazards. In southern Norway, steep topography and extreme weather events promote frequent traffic disruption caused by debris flows. Topographic susceptibility and trigger frequency maps serve as input into a hazard appraisal at the scale of first-order catchments to quantify the impact of debris flows on the road network in terms of a failure likelihood of each link connecting two network vertices, e.g. road junctions. We compute total additional traffic loads as a function of traffic volume and excess distance, i.e. the extra length of an alternative path connecting two previously disrupted network vertices using a shortest-path algorithm. Our risk metric of link failure is the total additional annual traffic load, expressed as vehicle kilometres, because of debris-flow-related road closures. We present two scenarios demonstrating the impact of debris flows on the road network and quantify the associated path-failure likelihood between major cities in southern Norway. The scenarios indicate that major routes crossing the central and north-western part of the study area are associated with high link-failure risk. Yet options for detours on major routes are manifold and incur only little additional costs provided that drivers are sufficiently well informed about road closures. Our risk estimates may be of importance to road network managers and transport companies relying on speedy delivery of services and goods.show moreshow less

Download full text files

  • pmnr519.pdfeng
    (7409KB)

    SHA-1: b6eaa8236f3d3d06b0ef70774bb9e12b8117a77d

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Nele Kristin Meyer, Wolfgang SchwanghartORCiDGND, Oliver KorupORCiDGND, F. Nadim
URN:urn:nbn:de:kobv:517-opus4-409586
DOI:https://doi.org/10.25932/publishup-40958
ISSN:1866-8372
Title of parent work (English):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Subtitle (English):traffic detours from debris flows in southern Norway
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (519)
Publication type:Postprint
Language:English
Date of first publication:2019/01/17
Publication year:2015
Publishing institution:Universität Potsdam
Release date:2019/01/17
Tag:network vulnerability
Issue:519
Number of pages:11
Source:Natural Hazards and Earth System Sciences 15 (2015), pp. 985-995 DOI 10.5194/nhess-15-985-2015
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
DDC classification:9 Geschichte und Geografie / 91 Geografie, Reisen / 910 Geografie, Reisen
Peer review:Referiert
Publishing method:Open Access
Grantor:Copernicus
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.