• search hit 18 of 26
Back to Result List

Nichtlineare Dynamik atmosphärischer Zirkulationsregime in einem idealisierten Modell

Nonlinear dynamics of atmospheric circulation regimes in an idealized model

  • Unter atmosphärischen Zirkulationsregimen versteht man bevorzugte quasi-stationäre Zustände der atmosphärischen Zirkulation auf der planetaren Skala, die für eine bis mehrere Wochen persistieren können. Klimaänderungen, ob natürlich entstanden oder anthropogen verursacht, äußern sich in erster Linie durch Änderungen der Auftrittswahrscheinlichkeiten der natürlichen Regime. In der vorliegenden Arbeit wurden dynamische Mechanismen des Regimeverhaltens und der dekadischen Klimavariabilität der Atmosphäre bei Abwesenheit zeitlich veränderlicher externer Einflussfaktoren untersucht. Das Hauptwerkzeug dafür war ein quasi-geostrophisches Dreischichtenmodell der winterlichen atmosphärischen Zirkulation auf der Nordhemisphäre, das eine spektrale T21-Auflösung, einen orographischen und einen zeitlich konstanten thermischen Antrieb mit nicht-zonalen Anteilen besitzt. Ein solches Modell vermag großskalige atmosphärische Strömungsvorgänge außerhalb der Tropen mit einiger Genauigkeit zu simulieren. Nicht berücksichtigt werden Feuchteprozesse, dieUnter atmosphärischen Zirkulationsregimen versteht man bevorzugte quasi-stationäre Zustände der atmosphärischen Zirkulation auf der planetaren Skala, die für eine bis mehrere Wochen persistieren können. Klimaänderungen, ob natürlich entstanden oder anthropogen verursacht, äußern sich in erster Linie durch Änderungen der Auftrittswahrscheinlichkeiten der natürlichen Regime. In der vorliegenden Arbeit wurden dynamische Mechanismen des Regimeverhaltens und der dekadischen Klimavariabilität der Atmosphäre bei Abwesenheit zeitlich veränderlicher externer Einflussfaktoren untersucht. Das Hauptwerkzeug dafür war ein quasi-geostrophisches Dreischichtenmodell der winterlichen atmosphärischen Zirkulation auf der Nordhemisphäre, das eine spektrale T21-Auflösung, einen orographischen und einen zeitlich konstanten thermischen Antrieb mit nicht-zonalen Anteilen besitzt. Ein solches Modell vermag großskalige atmosphärische Strömungsvorgänge außerhalb der Tropen mit einiger Genauigkeit zu simulieren. Nicht berücksichtigt werden Feuchteprozesse, die Wechselwirkung der Atmosphäre mit anderen Teilen des Klimasystems sowie anthropogene Einflüsse. Für das Dreischichtenmodell wurde ein automatisiertes, iteratives Verfahren zur Anpassung des thermischen Modellantriebs neu entwickelt. Jede Iteration des Verfahrens besteht aus einer Testintegration des Modells, ihrer Auswertung, dem Vergleich der Ergebnisse mit den NCEP-NCAR-Reanalysedaten aus den Wintermonaten Dezember, Januar und Februar sowie einer auf diesem Vergleich basierenden Antriebskorrektur. Nach Konvergenz des Verfahrens stimmt das Modell sowohl bezüglich des zonal gemittelten Klimazustandes als auch bezüglich der zeitgemittelten nicht-zonalen außertropischen diabatischen Erwärmung nahezu perfekt mit den wintergemittelten Reanalysedaten überein. In einer 1000-jährigen Simulation wurden die beobachtete mittlere Zirkulation im Winter sowie ihre Variabilität realitätsnah reproduziert, insbesondere die Arktische Oszillation (AO) und ihre vertikale Ausdehnung. Der AO-Index des Modells weist deutliche dekadische Schwankungen auf, die allein durch die interne Modelldynamik bedingt sind. Darüber hinaus zeigt das Modell ein Regimeverhalten, das gut mit den Beobachtungsdaten übereintimmt. Es besitzt ein Regime, das in etwa der negativen Phase der Nordatlantischen Oszillation (NAO) entspricht und eines, das der positiven Phase der AO ähnelt. Eine weit verbreitete Hypothese ist die näherungsweise Übereinstimmung zwischen Regimen und stationären Lösungen der Bewegungsgleichungen. In der vorliegenden Arbeit wurde diese Hypothese für das Dreischichtenmodell überprüft, mit negativem Resultat. Es wurden mittels eines Funktionalminimierungsverfahrens sechs verschiedene stationäre Zustände gefunden. Diese sind allesamt durch eine äußerst unrealistische Zirkulation gekennzeichnet und sind daher weit vom Modellattraktor entfernt. Fünf der sechs Zustände zeichnen sich durch einen extrem starken subtropischen Jet in der mittleren und obereren Modellschicht aus. Da die Ursache des Regimeverhaltens des Dreischichtenmodells nach wie vor unklar war, wurde auf ein einfacheres Modell, nämlich ein barotropes Modell mit T21-Auflösung zurückgegriffen. Für die Anpassung des Oberflächenantriebs wurde eine modifizierte Form der iterativen Prozedur verwendet. Die zeitgemittelte Zirkulation des barotropen Modells stimmt sehr gut mit der zeitlich und vertikal gemittelten Zirkulation des Dreischichtenmodells überein. Das dominierende räumliche Muster der Variabilität besitzt eine AO-ähnliche Struktur. Zudem besitzt das barotrope Modell zwei Regime, die näherungsweise der positiven und negativen Phase der AO entsprechen und somit auch den Regimen des Dreischichtenmodells ähneln. Im Verlauf der Justierung des Oberflächenantriebs konnte beobachtet werden, dass die zwei Regime des barotropen Modells durch die Vereinigung zweier koexistierender Attraktoren entstanden. Der wahrscheinliche Mechanismus der Attraktorvereinigung ist eine Randkrise eines der beiden Attraktoren, gefolgt von einer explosiven Bifurkation des anderen Attraktors. Es wird die Hypothese aufgestellt, dass der beim barotropen Modell vorgefundene Mechanismus der Regimeentstehung für atmosphärische Zirkulationsmodelle mit realitätsnahem Regimeverhalten Allgemeingültigkeit besitzt. Gestützt wird die Hypothese durch vier Experimente mit dem Dreischichtenmodell, bei denen jeweils der Parameter der Bodenreibung verringert und die Antriebsanpassung wiederholt wurde. Bei diesen Experimenten erhöhte sich die Persistenz und die Separiertheit der Regime bei abnehmender Reibung drastisch und damit auch der Anteil dekadischer Zeitskalen an der Variabilität. Die Zunahme der Persistenz der Regime ist charakteristisch für die Annäherung an eine inverse innere Krise, deren Existenz aber nicht nachgewiesen werden konnte.show moreshow less
  • Preferred quasi-stationary states of the planetary-scale atmospheric circulation, which may persist for one or several weeks, are referred to as atmospheric circulation regimes. Climate variations, either natural or anthropogenic, manifest themselves mainly in changes of the frequencies of occurrence of the natural regimes. In the presented work, dynamical mechanisms of regime behavior and decadal climate variability of the atmosphere in absence of time-varying external forcing factors have been examined using a quasi-geostrophic three-level model of the wintertime atmospheric circulation over the northern hemisphere. This model has spectral T21 resolution, an orographic and a time-constant thermal forcing including non-zonal components. Such kind of a model is able to simulate large-scale extratropical atmospheric processes with reasonable accuracy. However, moisture processes, the interaction between the atmosphere and other parts of the climate system, and anthropogenic influences are not accounted for. For the three-level model,Preferred quasi-stationary states of the planetary-scale atmospheric circulation, which may persist for one or several weeks, are referred to as atmospheric circulation regimes. Climate variations, either natural or anthropogenic, manifest themselves mainly in changes of the frequencies of occurrence of the natural regimes. In the presented work, dynamical mechanisms of regime behavior and decadal climate variability of the atmosphere in absence of time-varying external forcing factors have been examined using a quasi-geostrophic three-level model of the wintertime atmospheric circulation over the northern hemisphere. This model has spectral T21 resolution, an orographic and a time-constant thermal forcing including non-zonal components. Such kind of a model is able to simulate large-scale extratropical atmospheric processes with reasonable accuracy. However, moisture processes, the interaction between the atmosphere and other parts of the climate system, and anthropogenic influences are not accounted for. For the three-level model, a novel, automated, iterative procedure for the tuning of the thermal forcing has been developed. Every iteration of the procedure consists of a model test run, its evaluation, the comparison of the results with NCEP-NCAR reanalysis data for the winter months December, January, and February, and a forcing correction based on this comparison. After convergence of the procedure, the model matches the reanalysis data almost perfectly, as far as it concerns the zonal mean climate state and the time-mean non-zonal extratropical diabatic heating. In a 1000-year simulation, the observed time-mean circulation in winter as well as its variability have been reproduced with considerable realism, in particular the Arctic Oscillation (AO) and its deep vertical extent. The modeled AO index exhibits pronounced decadal variations, exclusively caused by internal model dynamics. Furthermore, the model's regime behavior is in good agreement with observations. It possesses one regime resembling the negative phase of the North Atlantic Oscillation (NAO) and another resembling the positive phase of the AO. A well-known hypothesis is the approximate correspondence between regimes and stationary solutions of the equations of motion. In the presented work, this hypothesis has been checked for the three-level model, but with negative result. Using a functional minimization method, six steady states have been found. All of them correspond to an extremely unrealistic circulation, and thus they are far away from the model's attractor. Five of the six steady states are characterized by a strongly exaggerated subtropical jet in the middle and upper model level. As the origin of regime behavior was still unclear, a simpler model, namely a T21 barotropic model, has been reverted to. For the adaptation of the surface forcing, a modified version of the tuning procedure has been applied. The time-mean circulation of the barotropic model matches the temporally and vertically averaged circulation of the three-level model very well. The dominant spatial pattern of variability has an AO-like structure. Furthermore, the barotropic model possesses two regimes which approximately correspond to the positive and negative AO phase and therefore resemble the regimes of the three-level model. During the tuning of the surface forcing it has been observed that the two regimes of the barotropic model have emerged from the unification of two coexisting attractors. The mechanism responsible for this attractor merging is probably a boundary crisis of one of these attractors, followed by an explosive bifurcation of the other attractor. It is hypothesized that the mechanism of regime genesis found in the barotropic model is universally valid for atmospheric circulation models with realistic regime behavior. This hypothesis is supported by four experiments with the three-level model, where the surface friction parameter has been decreased and the tuning procedure has been repeated, respectively. In these experiments, the persistence and separation of the regimes increases dramatically with decreasing friction, and thereby the fraction of decadal-scale variability. The increase of regime persistence is characteristic of approaching an inverse interior crisis, the existence of which, however, could not be proven.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Mario Sempf
URN:urn:nbn:de:kobv:517-opus-5989
Advisor:Klaus Dethloff
Document Type:Doctoral Thesis
Language:German
Year of Completion:2005
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2005/10/24
Release Date:2005/11/16
Tag:Atmosphärendynamik; Zirkulationsregime; dekadische Klimavariabilität; quasi-geostropisches Modell
atmospheric dynamics; circulation regimes; decadal climate variability; quasi-geostrophic model
GND Keyword:Nichtlineare Dynamik; Modellierung
RVK - Regensburg Classification:TI 02600
RVK - Regensburg Classification:UT 1080
RVK - Regensburg Classification:UT 6000
RVK - Regensburg Classification:SK 810
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik