• search hit 2 of 4
Back to Result List

Nichtlineare Kopplungsmechanismen akustischer Oszillatoren am Beispiel der Synchronisation von Orgelpfeifen

Nonlinear coupling mechanisms of acoustical oscillators using the example of synchronization of organ pipes

  • In dieser Arbeit werden nichtlineare Kopplungsmechanismen von akustischen Oszillatoren untersucht, die zu Synchronisation führen können. Aufbauend auf die Fragestellungen vorangegangener Arbeiten werden mit Hilfe theoretischer und experimenteller Studien sowie mit Hilfe numerischer Simulationen die Elemente der Tonentstehung in der Orgelpfeife und die Mechanismen der gegenseitigen Wechselwirkung von Orgelpfeifen identifiziert. Daraus wird erstmalig ein vollständig auf den aeroakustischen und fluiddynamischen Grundprinzipien basierendes nichtlinear gekoppeltes Modell selbst-erregter Oszillatoren für die Beschreibung des Verhaltens zweier wechselwirkender Orgelpfeifen entwickelt. Die durchgeführten Modellrechnungen werden mit den experimentellen Befunden verglichen. Es zeigt sich, dass die Tonentstehung und die Kopplungsmechanismen von Orgelpfeifen durch das entwickelte Oszillatormodell in weiten Teilen richtig beschrieben werden. Insbesondere kann damit die Ursache für den nichtlinearen Zusammenhang von Kopplungsstärke undIn dieser Arbeit werden nichtlineare Kopplungsmechanismen von akustischen Oszillatoren untersucht, die zu Synchronisation führen können. Aufbauend auf die Fragestellungen vorangegangener Arbeiten werden mit Hilfe theoretischer und experimenteller Studien sowie mit Hilfe numerischer Simulationen die Elemente der Tonentstehung in der Orgelpfeife und die Mechanismen der gegenseitigen Wechselwirkung von Orgelpfeifen identifiziert. Daraus wird erstmalig ein vollständig auf den aeroakustischen und fluiddynamischen Grundprinzipien basierendes nichtlinear gekoppeltes Modell selbst-erregter Oszillatoren für die Beschreibung des Verhaltens zweier wechselwirkender Orgelpfeifen entwickelt. Die durchgeführten Modellrechnungen werden mit den experimentellen Befunden verglichen. Es zeigt sich, dass die Tonentstehung und die Kopplungsmechanismen von Orgelpfeifen durch das entwickelte Oszillatormodell in weiten Teilen richtig beschrieben werden. Insbesondere kann damit die Ursache für den nichtlinearen Zusammenhang von Kopplungsstärke und Synchronisation des gekoppelten Zwei-Pfeifen Systems, welcher sich in einem nichtlinearen Verlauf der Arnoldzunge darstellt, geklärt werden. Mit den gewonnenen Erkenntnissen wird der Einfluss des Raumes auf die Tonentstehung bei Orgelpfeifen betrachtet. Dafür werden numerische Simulationen der Wechselwirkung einer Orgelpfeife mit verschiedenen Raumgeometrien, wie z. B. ebene, konvexe, konkave, und gezahnte Geometrien, exemplarisch untersucht. Auch der Einfluss von Schwellkästen auf die Tonentstehung und die Klangbildung der Orgelpfeife wird studiert. In weiteren, neuartigen Synchronisationsexperimenten mit identisch gestimmten Orgelpfeifen, sowie mit Mixturen wird die Synchronisation für verschiedene, horizontale und vertikale Pfeifenabstände in der Ebene der Schallabstrahlung, untersucht. Die dabei erstmalig beobachteten räumlich isotropen Unstetigkeiten im Schwingungsverhalten der gekoppelten Pfeifensysteme, deuten auf abstandsabhängige Wechsel zwischen gegen- und gleichphasigen Sychronisationsregimen hin. Abschließend wird die Möglichkeit dokumentiert, das Phänomen der Synchronisation zweier Orgelpfeifen durch numerische Simulationen, also der Behandlung der kompressiblen Navier-Stokes Gleichungen mit entsprechenden Rand- und Anfangsbedingungen, realitätsnah abzubilden. Auch dies stellt ein Novum dar.show moreshow less
  • In this work non-linear coupling mechanisms in acoustic oscillator systems are examined which can lead to synchronization phenomena. This mechanisms are investigated in particular on organ pipes. Building up on the questions of preceding works the elements of the sound generation are identified using detailed experimental and theoretical studies, as well as numerical simulations. Furthermore the organ pipes interaction mechanisms of the mutual coupling are developed. This leads to a non-linear coupled oscillator model which is developed on the aeroacoustical and fluiddynamical first principles. The carried out model calculations are compared to the experimental results from preceding works. It appears that the sound generation and the coupling mechanisms are properly described by the developed nonlinear coupled model of self-sustained oscillators. In particular the cause can be cleared with it for the non-linear edges of the Arnold tongue of the coupled two-pipe system. With the new knowledge the influence of various space geometriesIn this work non-linear coupling mechanisms in acoustic oscillator systems are examined which can lead to synchronization phenomena. This mechanisms are investigated in particular on organ pipes. Building up on the questions of preceding works the elements of the sound generation are identified using detailed experimental and theoretical studies, as well as numerical simulations. Furthermore the organ pipes interaction mechanisms of the mutual coupling are developed. This leads to a non-linear coupled oscillator model which is developed on the aeroacoustical and fluiddynamical first principles. The carried out model calculations are compared to the experimental results from preceding works. It appears that the sound generation and the coupling mechanisms are properly described by the developed nonlinear coupled model of self-sustained oscillators. In particular the cause can be cleared with it for the non-linear edges of the Arnold tongue of the coupled two-pipe system. With the new knowledge the influence of various space geometries on the sound generation of organ pipes is investigated. With numerical simulations the interaction of an organ pipe and different space geometries, like plane, convex, concave, and ridged geometry is studied. Also the influence of so called swell boxes on the sound generation and the sound pattern of the organ pipe is studied. In further new synchronization experiments with precisely equally tuned pairs of organ pipes, as well as with mixtures the synchronization is examined for various grids of horizontal and vertical pipe distances in the 2D-plane of sound radiation. The spatial discontinuities observed in the oscillation behaviour of the coupled pipe systems, point to changes between anti-phase and in-phase regimes of sychronization depending on pipes distances. Finally the possibility is documented to describe the phenomenon of the synchronization of two organ pipes realisticaly by solving the compressible Navier-Stokes equations numerically.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Jost Leonhardt FischerGND
URN:urn:nbn:de:kobv:517-opus-71975
Advisor:Markus Abel
Document Type:Doctoral Thesis
Language:German
Year of Completion:2014
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2014/09/16
Release Date:2014/10/02
Tag:Experiment; Modell; Orgelpfeifen; Simulation; Synchronisation
experiment; model; organ pipes; simulation; synchronization
RVK - Regensburg Classification:UF 1080, UF 6200, UF 6900
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
PACS Classification:00.00.00 GENERAL / 05.00.00 Statistical physics, thermodynamics, and nonlinear dynamical systems (see also 02.50.-r Probability theory, stochastic processes, and statistics) / 05.45.-a Nonlinear dynamics and chaos (see also section 45 Classical mechanics of discrete systems; for chaos in fluid dynamics, see 47.52.+j) / 05.45.Pq Numerical simulations of chaotic systems
00.00.00 GENERAL / 05.00.00 Statistical physics, thermodynamics, and nonlinear dynamical systems (see also 02.50.-r Probability theory, stochastic processes, and statistics) / 05.45.-a Nonlinear dynamics and chaos (see also section 45 Classical mechanics of discrete systems; for chaos in fluid dynamics, see 47.52.+j) / 05.45.Xt Synchronization; coupled oscillators
00.00.00 GENERAL / 07.00.00 Instruments, apparatus, and components common to several branches of physics and astronomy (see also each subdiscipline for specialized instrumentation and techniques) / 07.05.-t Computers in experimental physics; Computers in education, see 01.50.H- and 01.50.Lc; Computational techniques, see 02.70.-c; Quantum computation architectures and implementations, see 03.67.Lx; Optical computers, see 42.79.Ta / 07.05.Kf Data analysis: algorithms and implementation; data management (for data analysis in nuclear physics, see 29.85.-c)
40.00.00 ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS / 43.00.00 Acoustics (for more detailed headings, see Appendix to section 43) / 43.25.+y Nonlinear acoustics
40.00.00 ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS / 43.00.00 Acoustics (for more detailed headings, see Appendix to section 43) / 43.28.+h Aeroacoustics and atmospheric sound (see also 92.60.hh Acoustic gravity waves, tides, and compressional waves in meteorology)
Licence (German):License LogoCreative Commons - Namensnennung, 4.0 International
Notes extern:Supplement:
http://opus.kobv.de/ubp/volltexte/2014/7197/original/video.zip