The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 21 of 60
Back to Result List

Error distribution in regional modelling of the geomagnetic field

  • In this study we analyse the error distribution in regional models of the geomagnetic field. Our main focus is to investigate the distribution of errors when combining two regional patches to obtain a global field from regional ones. To simulate errors in overlapping patches we choose two different data region shapes that resemble that scenario. First, we investigate the errors in elliptical regions and secondly we choose a region obtained from two overlapping circular spherical caps. We conduct a Monte-Carlo simulation using synthetic data to obtain the expected mean errors. For the elliptical regions the results are similar to the ones obtained for circular spherical caps: the maximum error at the boundary decreases towards the centre of the region. A new result emerges as errors at the boundary vary with azimuth, being largest in the major axis direction and minimal in the minor axis direction. Inside the region there is an error decay towards a minimum at the centre at a rate similar to the one in circular regions. In the case ofIn this study we analyse the error distribution in regional models of the geomagnetic field. Our main focus is to investigate the distribution of errors when combining two regional patches to obtain a global field from regional ones. To simulate errors in overlapping patches we choose two different data region shapes that resemble that scenario. First, we investigate the errors in elliptical regions and secondly we choose a region obtained from two overlapping circular spherical caps. We conduct a Monte-Carlo simulation using synthetic data to obtain the expected mean errors. For the elliptical regions the results are similar to the ones obtained for circular spherical caps: the maximum error at the boundary decreases towards the centre of the region. A new result emerges as errors at the boundary vary with azimuth, being largest in the major axis direction and minimal in the minor axis direction. Inside the region there is an error decay towards a minimum at the centre at a rate similar to the one in circular regions. In the case of two combined circular regions there is also an error decay from the boundary towards the centre. The minimum error occurs at the centre of the combined regions. The maximum error at the boundary occurs on the line containing the two cap centres, the minimum in the perpendicular direction where the two circular cap boundaries meet. The large errors at the boundary are eliminated by combining regional patches. We propose an algorithm for finding the boundary region that is applicable to irregularly shaped model regions.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:R. Schachtschneider, Matthias HolschneiderORCiDGND, M. Mandea
DOI:https://doi.org/10.1111/j.1365-246X.2012.05675.x
ISSN:0956-540X
Title of parent work (English):Geophysical journal international
Publisher:Wiley-Blackwell
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:Geopotential theory; Magnetic anomalies: modelling and interpretation; Satellite magnetics
Volume:191
Issue:3
Number of pages:10
First page:1015
Last Page:1024
Funding institution:German Science Foundation [SPP1524]; GEOTECHNOLOGIEN program [03G0728D]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.