• search hit 15 of 258
Back to Result List

The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities

  • In this study we investigated conditions for loss of GPS signals observed by the Swarm satellites during a 2 year period, from December 2013 to November 2015. Our result shows that the Swarm satellites encountered most of the total loss of GPS signal at the ionization anomaly crests, between +/- 5 degrees and +/- 20 degrees magnetic latitude, forming two bands along the magnetic equator, and these low-latitude events mainly appear around postsunset hours from 19: 00 to 22: 00 local time. By further checking the in situ electron density measurements of Swarm, we found that practically, all the total loss of GPS signal events at low latitudes are related to equatorial plasma irregularities (EPIs) that show absolute density depletions larger than 10 x 10(11) m(-3); then, the Swarm satellites encountered for up to 95% loss of GPS signal for at least one channel and up to 45% tracked less than four GPS satellites (making precise orbit determination impossible). For those EPIs with density depletions less than 10 x 10(11) m(-3), the chanceIn this study we investigated conditions for loss of GPS signals observed by the Swarm satellites during a 2 year period, from December 2013 to November 2015. Our result shows that the Swarm satellites encountered most of the total loss of GPS signal at the ionization anomaly crests, between +/- 5 degrees and +/- 20 degrees magnetic latitude, forming two bands along the magnetic equator, and these low-latitude events mainly appear around postsunset hours from 19: 00 to 22: 00 local time. By further checking the in situ electron density measurements of Swarm, we found that practically, all the total loss of GPS signal events at low latitudes are related to equatorial plasma irregularities (EPIs) that show absolute density depletions larger than 10 x 10(11) m(-3); then, the Swarm satellites encountered for up to 95% loss of GPS signal for at least one channel and up to 45% tracked less than four GPS satellites (making precise orbit determination impossible). For those EPIs with density depletions less than 10 x 10(11) m(-3), the chance of tracked GPS signals less than four reduces to only 1.0%. Swarm also observed total loss of all GPS signal at high latitudes, mainly around local noon, and these events are related to large spatial density gradients due to polar patches or increased geomagnetic/auroral activities. We further found that the loss of GPS signals were less frequent after appropriate settings of the Swarm GPS receivers had been updated. However, the more recent period of the mission, e.g., after the GPS receiver settings have been updated, also coincides with less severe electron density depletions due to the declining solar cycle, making GPS loss events less likely. We conclude that both lower electron density gradients and appropriate GPS receiver settings reduce the probability for Swarm satellites loss of GPS signals.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Chao XiongORCiD, Claudia StolleORCiDGND, Hermann LührORCiD
DOI:https://doi.org/10.1002/2016SW001439
ISSN:1542-7390
Title of parent work (English):Space Weather: The International Journal of Research and Applications
Publisher:American Geophysical Union
Place of publishing:Washington
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Volume:14
Number of pages:15
First page:563
Last Page:577
Funding institution:DFG priority program "Dynamic Earth" [1788]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.