• search hit 1 of 9
Back to Result List

An investigation of complex deformation patterns detected by using InSAR at Llaima and Tendürek volcanoes

Eine Untersuchung von komplexen Erdoberflächenverformungen gemessen mit InSAR, an den Vulkanen Llaima und Tendürek

  • Surface displacement at volcanic edifices is related to subsurface processes associated with magma movements, fluid transfers within the volcano edifice and gravity-driven deformation processes. Understanding of associated ground displacements is of importance for assessment of volcanic hazards. For example, volcanic unrest is often preceded by surface uplift, caused by magma intrusion and followed by subsidence, after the withdrawal of magma. Continuous monitoring of the surface displacement at volcanoes therefore might allow the forecasting of upcoming eruptions to some extent. In geophysics, the measured surface displacements allow the parameters of possible deformation sources to be estimated through analytical or numerical modeling. This is one way to improve the understanding of subsurface processes acting at volcanoes. Although the monitoring of volcanoes has significantly improved in the last decades (in terms of technical advancements and number of monitored volcanoes), the forecasting of volcanic eruptions remains puzzling.Surface displacement at volcanic edifices is related to subsurface processes associated with magma movements, fluid transfers within the volcano edifice and gravity-driven deformation processes. Understanding of associated ground displacements is of importance for assessment of volcanic hazards. For example, volcanic unrest is often preceded by surface uplift, caused by magma intrusion and followed by subsidence, after the withdrawal of magma. Continuous monitoring of the surface displacement at volcanoes therefore might allow the forecasting of upcoming eruptions to some extent. In geophysics, the measured surface displacements allow the parameters of possible deformation sources to be estimated through analytical or numerical modeling. This is one way to improve the understanding of subsurface processes acting at volcanoes. Although the monitoring of volcanoes has significantly improved in the last decades (in terms of technical advancements and number of monitored volcanoes), the forecasting of volcanic eruptions remains puzzling. In this work I contribute towards the understanding of the subsurface processes at volcanoes and thus to the improvement of volcano eruption forecasting. I have investigated the displacement field of Llaima volcano in Chile and of Tendürek volcano in East Turkey by using synthetic aperture radar interferometry (InSAR). Through modeling of the deformation sources with the extracted displacement data, it was possible to gain insights into potential subsurface processes occurring at these two volcanoes that had been barely studied before. The two volcanoes, although of very different origin, composition and geometry, both show a complexity of interacting deformation sources. At Llaima volcano, the InSAR technique was difficult to apply, due to the large decorrelation of the radar signal between the acquisition of images. I developed a model-based unwrapping scheme, which allows the production of reliable displacement maps at the volcano that I used for deformation source modeling. The modeling results show significant differences in pre- and post-eruptive magmatic deformation source parameters. Therefore, I conjecture that two magma chambers exist below Llaima volcano: a post-eruptive deep one and a shallow one possibly due to the pre-eruptive ascent of magma. Similar reservoir depths at Llaima have been confirmed by independent petrologic studies. These reservoirs are interpreted to be temporally coupled. At Tendürek volcano I have found long-term subsidence of the volcanic edifice, which can be described by a large, magmatic, sill-like source that is subject to cooling contraction. The displacement data in conjunction with high-resolution optical images, however, reveal arcuate fractures at the eastern and western flank of the volcano. These are most likely the surface expressions of concentric ring-faults around the volcanic edifice that show low magnitudes of slip over a long time. This might be an alternative mechanism for the development of large caldera structures, which are so far assumed to be generated during large catastrophic collapse events. To investigate the potential subsurface geometry and relation of the two proposed interacting sources at Tendürek, a sill-like magmatic source and ring-faults, I have performed a more sophisticated numerical modeling approach. The optimum source geometries show, that the size of the sill-like source was overestimated in the simple models and that it is difficult to determine the dip angle of the ring-faults with surface displacement data only. However, considering physical and geological criteria a combination of outward-dipping reverse faults in the west and inward-dipping normal faults in the east seem to be the most likely. Consequently, the underground structure at the Tendürek volcano consists of a small, sill-like, contracting, magmatic source below the western summit crater that causes a trapdoor-like faulting along the ring-faults around the volcanic edifice. Therefore, the magmatic source and the ring-faults are also interpreted to be temporally coupled. In addition, a method for data reduction has been improved. The modeling of subsurface deformation sources requires only a relatively small number of well distributed InSAR observations at the earth’s surface. Satellite radar images, however, consist of several millions of these observations. Therefore, the large amount of data needs to be reduced by several orders of magnitude for source modeling, to save computation time and increase model flexibility. I have introduced a model-based subsampling approach in particular for heterogeneously-distributed observations. It allows a fast calculation of the data error variance-covariance matrix, also supports the modeling of time dependent displacement data and is, therefore, an alternative to existing methods.show moreshow less
  • Oberflächenverschiebungen an Vulkanen können einerseits durch unterirdische Magmen- oder Fluidbewegungen oder andererseits durch Gravitation verursacht werden. So sind insbesondere vor Eruptionen oft Aufwölbungen an Vulkanen zu beobachten, verursacht durch Magmenintrusion in die Erdkruste. Nach Eruptionen hingegen sinkt das Vulkangebäude aufgrund von Magmenextrusion wieder. Kontinuierliche Messungen an Vulkanen ermöglichen es, Eruptionen teilweise bis auf wenige Tage vorherzusagen. Die gemessenen Oberflächenverschiebungen können in analytischen oder numerischen Modellierungen genutzt werden, um Parameter eines möglichen Quellprozesses abzuschätzen. Auf diese Art und Weise kann das Verständnis über die unterirdischen Prozesse, die an Vulkanen stattfinden, verbessert werden. Obwohl es in den letzten Jahrzehnten eine enorme Entwicklung und Verbesserung der Überwachung von Vulkanen gab, sind viele Vorhersagen sehr vage und ungenau. Mit dieser Arbeit möchte ich einen Beitrag zum Verständnis von unterirdischen Prozessen an Vulkanen und aufOberflächenverschiebungen an Vulkanen können einerseits durch unterirdische Magmen- oder Fluidbewegungen oder andererseits durch Gravitation verursacht werden. So sind insbesondere vor Eruptionen oft Aufwölbungen an Vulkanen zu beobachten, verursacht durch Magmenintrusion in die Erdkruste. Nach Eruptionen hingegen sinkt das Vulkangebäude aufgrund von Magmenextrusion wieder. Kontinuierliche Messungen an Vulkanen ermöglichen es, Eruptionen teilweise bis auf wenige Tage vorherzusagen. Die gemessenen Oberflächenverschiebungen können in analytischen oder numerischen Modellierungen genutzt werden, um Parameter eines möglichen Quellprozesses abzuschätzen. Auf diese Art und Weise kann das Verständnis über die unterirdischen Prozesse, die an Vulkanen stattfinden, verbessert werden. Obwohl es in den letzten Jahrzehnten eine enorme Entwicklung und Verbesserung der Überwachung von Vulkanen gab, sind viele Vorhersagen sehr vage und ungenau. Mit dieser Arbeit möchte ich einen Beitrag zum Verständnis von unterirdischen Prozessen an Vulkanen und auf lange Sicht gesehen, zur Vorhersage von Eruptionen leisten. Ich habe die Vulkane, Llaima in Chile und Tendürek im Osten der Türkei, mit Hilfe der Interferometrie von Radardaten (InSAR) untersucht. Die somit gemessenen Verschiebungen an der Erdoberfläche ermöglichen es, durch Modellierung der möglichen Deformationsquellen, Informationen über die Untergrundstrukturen dieser beiden bisher kaum erforschten Vulkane zu bekommen. Obwohl unterschiedlich in Aufbau, Gesteinszusammensetzung und Entstehung, zeigen beide Vulkane Anzeichen dafür, dass jeweils mehrere interagierende Deformationsquellen im Untergrund existieren. Am Vulkan Llaima war es schwierig, aufgrund der starken Dekorrelation des Radarsignals zwischen den Satellitenaufnahmen, die InSAR Methode anzuwenden. Ich entwickelte eine Methode um die doppeldeutigen relativen Phasenwerte der Interferogramme modellbasiert in eindeutige relative Phasenwerte umzurechnen. Die damit erzeugten Oberflächenverschiebungskarten am Vulkan eigneten sich nun für eine anschließende Modellierung der Deformationsquelle. Die Modellierungsergebnisse zeigen signifikante Unterschiede zwischen den Parametern der präeruptiven- und posteruptiven Deformationsquellen. Demzufolge könnten zwei unterschiedliche, interagierende Magmenkammern unter Llaima existieren, eine tiefe, posteruptiv aktive Kammer und eine flache, durch den Aufstieg von Magma präeruptiv aktive Kammer. Am Vulkan Tendürek ist eine langfristige, kontinuierliche Senkung des Vulkangebäudes zu beobachten, die mit einem großen, aufgrund von Kühlung sich kontrahierenden, magmatischen Sill, erklärbar ist. Unter Hinzunahme von hochauflösenden, optischen Daten jedoch, sind bei genauerer Untersuchung bogenförmige Strukturen an der Erdoberfläche sichtbar. Diese sind Anzeichen dafür, dass Verwerfungen existieren, die das gesamte Vulkangebäude in einem elliptischen Ring umgeben. Dabei ist zu beobachten, dass die Ringstörungen über Jahrtausende, möglicherweise sogar kontinuierlich, geringe Magnituden von Versatz aufweisen. Bei langer, kontinuierlicher Aktivität über mehrere zehntausende von Jahren, könnte dies ein weiterer Mechanismus zur Entstehung von Calderastrukturen an Vulkanen darstellen, der jedoch sehr langsam verläuft. Im Gegensatz dazu ist die heutige weit verbreitete Auffassung, dass Calderen als Folge katastrophaler Einstürze von Vulkangebäuden entstehen. Um zu untersuchen welche Geometrie die vorgeschlagenen Strukturen Sill und Ringstörungen an Tendürek im Untergund haben könnten, vollführte ich eine weitaus komplexere numerische Modellierung. Diese zeigt, dass die Größe des Sills ohne Berücksichtigung der Ringstörung um ein Vielfaches überschätzt ist. Die Orientierung und Geometrie der Ringstörungen ist jedoch nicht eindeutig nur mit Oberflächenverschiebungsdaten auflösbar. Unter der Berücksichtigung von geologischen und physikalischen Gesichtspunkten sind nach Außen einfallende Aufschiebungen im Westen und nach Innen einfallende Abschiebungen im Osten die plausibelste Erklärung. Außerdem habe ich eine Methode zur Datenreduzierung entwickelt. Abhängig vom zu untersuchenden Prozess sind für die Modellierung von unterirdischen Deformationsquellen verhältnismäßig wenige gut verteilte Messpunkte an der Erdoberfläche ausreichend. Satelliten gestützte Radaraufnahmen haben jedoch oft mehrere Millionen dieser Punkte. Deshalb müssen diese riesigen Datensätze auf eine Art und Weise reduziert werden, dass keine oder nur möglichst wenige Informationen verloren gehen. Für diesen Zweck habe ich, ausgehend von einem existierenden Algorithmus, eine modellbasierte Methode zur Reduzierung von besonders heterogen verteilten Oberflächendaten entwickelt. Diese Methode ist besonders gut auf Zeitreihendatensätze anwendbar und stellt somit eine Alternative zu existierenden Algorithmen dar.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Hannes BathkeORCiDGND
URN:urn:nbn:de:kobv:517-opus-70522
Advisor:Thomas R. Walter
Document Type:Doctoral Thesis
Language:English
Year of Completion:2014
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2014/04/03
Release Date:2014/05/20
Tag:Deformationsquellenmodellierung; InSAR; Llaima Vulkan; Ringstörungen; Tendürek Vulkan
InSAR; Llaima volcano; Tendürek volcano; deformation source modeling; ring-fault
RVK - Regensburg Classification:UT 2250, UT 2700
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht