The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 42 of 85
Back to Result List

Model membrane interactions with ions and peptides at the air/water interface

Wechselwirkungen von Modellmembranen mit Ionen und Peptiden - studiert an der Luft-Wasser-Grenzfläche

  • The interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated biochemical processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Alteration of peptide structure could be a cause of many diseases. Biological membranes are complex systems, therefore simplified models may be introduced in order to understand processes occurring in nature. The lipid monolayers at the air/water interface are suitable model systems to mimic biological membranes since many parameters can be easily controlled. In the present work the lipid monolayers were used as a model membrane and their interactions with two different peptides B18 and Amyloid beta (1-40) peptide were investigated. B18 is a synthetic peptide that binds to lipid membranes that leads to the membrane fusion. It was demonstrated that it adopts different structures in the aqueous solutions and in the membrane interior. It isThe interactions between peptides and lipids are of fundamental importance in the functioning of numerous membrane-mediated biochemical processes including antimicrobial peptide action, hormone-receptor interactions, drug bioavailability across the blood-brain barrier and viral fusion processes. Alteration of peptide structure could be a cause of many diseases. Biological membranes are complex systems, therefore simplified models may be introduced in order to understand processes occurring in nature. The lipid monolayers at the air/water interface are suitable model systems to mimic biological membranes since many parameters can be easily controlled. In the present work the lipid monolayers were used as a model membrane and their interactions with two different peptides B18 and Amyloid beta (1-40) peptide were investigated. B18 is a synthetic peptide that binds to lipid membranes that leads to the membrane fusion. It was demonstrated that it adopts different structures in the aqueous solutions and in the membrane interior. It is unstructured in solutions and forms alpha-helix at the air/water interface or in the membrane bound state. The peptide has affinity to the negatively charged lipids and even can fold into beta-sheet structure in the vicinity of charged membranes at high peptide to lipid ratio. It was elucidated that in the absence of electrostatic interactions B18 does not influence on the lipid structure, whereas it provides partial liquidization of the negatively charged lipids. The understanding of mechanism of the peptide action in model system may help to develop the new type of antimicrobial peptides as well as it can shed light on the general mechanisms of peptide/membrane binding. The other studied peptide - Amyloid beta (1-40) peptide, which is the major component of amyloid plaques found in the brain of patients with Alzheimer's disease. Normally the peptide is soluble and is not toxic. During aging or as a result of the disease it aggregates and shows a pronounced neurotoxicity. The peptide aggregation involves the conformational transition from a random coil or alpha-helix to beta-sheets. Recently it was demonstrated that the membrane can play a crucial role for the peptide aggregation and even more the peptide can cause the change in the cell membranes that leads to a neuron death. In the present studies the structure of the membrane bound Amyloid beta peptide was elucidated. It was found that the peptide adopts the beta-sheet structure at the air/water interface or being adsorbed on lipid monolayers, while it can form alpha-helical structure in the presence of the negatively charged vesicles. The difference between the monolayer system and the bulk system with vesicles is the peptide to lipid ratio. The peptide adopts the helical structure at low peptide to lipid ratio and folds into beta-sheet at high ratio. Apparently, Abeta peptide accumulation in the brain is concentration driven. Increasing concentration leads to a change in the lipid to peptide ratio that induces the beta-sheet formation. The negatively charged lipids can act as seeds in the plaque formation, the peptide accumulates on the membrane and when the peptide to lipid ratio increases it the peptide forms toxic beta-sheet containing aggregates.show moreshow less
  • Wechselwirkungen zwischen Peptiden und Lipiden sind von grundlegender Bedeutung für die Funktion vieler Membran-vermittelter biochemischer Prozesse wie der Wirkung von antimikrobiellen Peptiden, Hormon-Rezeptor Wechselwirkungen, Bioverfügbarkeit von Arzneistoffen durch die Blut-Hirn-Schranke und viraler Fusionsprozesse. Veränderungen in der Peptidstruktur können die Ursache für viele Erkrankungen sein. Biologische Membranen sind für grundlegende physikalisch-chemische Untersuchungen von Naturprozessen zu komplexe Systeme, so dass vereinfachte Modelle für solche Studien eingesetzt werden. Eine Lipidmonoschicht an der Wasser/Luft Grenzfläche ist ein geeignetes Modellsystem für eine Membranoberfläche. Viele physikalisch-chemischen Parameter können auf einfache Weise gezielt verändert werden. In der vorliegenden Arbeit wurden Lipidmonoschichten genutzt, um Wechselwirkungen mit zwei unterschiedlichen Peptiden (B18 and Amyloid Beta (1-40) Peptid) zu untersuchen. B18 ist ein oberflächenaktives synthetisches Peptid, das an LipidmembranenWechselwirkungen zwischen Peptiden und Lipiden sind von grundlegender Bedeutung für die Funktion vieler Membran-vermittelter biochemischer Prozesse wie der Wirkung von antimikrobiellen Peptiden, Hormon-Rezeptor Wechselwirkungen, Bioverfügbarkeit von Arzneistoffen durch die Blut-Hirn-Schranke und viraler Fusionsprozesse. Veränderungen in der Peptidstruktur können die Ursache für viele Erkrankungen sein. Biologische Membranen sind für grundlegende physikalisch-chemische Untersuchungen von Naturprozessen zu komplexe Systeme, so dass vereinfachte Modelle für solche Studien eingesetzt werden. Eine Lipidmonoschicht an der Wasser/Luft Grenzfläche ist ein geeignetes Modellsystem für eine Membranoberfläche. Viele physikalisch-chemischen Parameter können auf einfache Weise gezielt verändert werden. In der vorliegenden Arbeit wurden Lipidmonoschichten genutzt, um Wechselwirkungen mit zwei unterschiedlichen Peptiden (B18 and Amyloid Beta (1-40) Peptid) zu untersuchen. B18 ist ein oberflächenaktives synthetisches Peptid, das an Lipidmembranen bindet und zu Membranfusion führt. Es kann verschiedene Sekundärstrukturen ausbilden. So ist B18 in wässrigen Lösungen ungeordnet und bildet eine alpha-helikale Struktur an der Wasser/Luft Grenzfläche. Das Peptid hat eine große Affinität zu negativ geladenen Lipiden und kann in der Nähe von geladenen Membranoberflächen bei einem großen Peptid/Lipid Verhältnis eine Beta-Faltblatt Struktur ausbilden. Beim Fehlen elektrostatischer Wechselwirkungen hat B18 keinen Einfluss auf die Lipidstruktur. Es wirkt jedoch strukturabbauend auf anionische Lipide. Das Verständnis der Peptidwirkungen in Modellsystemen kann helfen, generelle Mechanismen von Peptide-Membran Wechselwirkungen zu verstehen und zur Entwicklung neuer antimikrobieller Peptide beizutragen. Amyloid Beta (1-40) Peptid ist die Hauptkomponente von Amyloid-Plaque, das im Gehirn von Alzheimer Patienten gefunden wird. Normalerweise ist das Peptid löslich und nicht toxisch. Hohe Neurotoxizität wird bei Peptidaggregation, die eine Strukturumwandlung von ungeordnet oder alpha-helikal zu Beta-Faltblatt nach sich zieht, beobachtet. In der vorliegenden Arbeit wurde die Struktur des Membran-gebundenen Amyloid Beta (1-40) Peptids untersucht. Es zeigte sich, dass das Peptid nach Adsorption an die Wasser/Luft Grenzfläche oder an Lipidmonoschichten eine Beta-Faltblatt Struktur ausbildet. Eine alpha-helikale Sekundärstruktur wird nur bei Anwesenheit negativ geladenen Lipidvesikel gefunden. Der entscheidende Unterschied zwischen den Monoschicht- und Vesikel-Systemen ist das Peptid/Lipid Verhältnis. Die alpha-helikale Struktur wird nur bei kleinem Peptid/Lipid Verhältnis beobachtet, während bei großem eine Beta-Faltblatt Struktur auftritt. Steigende Konzentration an Amyloid Beta (1-40) Peptid führt zum Anstieg des Peptid/Lipid Verhältnisses und damit zur Ausbildung der Beta-Faltblatt Struktur. Negativ geladene Lipide können somit als Keimpunkte für die Plaquebildung fungieren.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Elena Maltseva
URN:urn:nbn:de:kobv:517-opus-5670
Supervisor(s):Helmuth Möhwald
Publication type:Doctoral Thesis
Language:English
Publication year:2005
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2005/07/12
Release date:2005/08/17
Tag:Amyloid peptide; IRRAS; Langmuir monolayers; Phospholipid
GND Keyword:Lipide; Monoschicht; Peptide
RVK - Regensburg classification:VK 5070
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.