• search hit 45 of 136
Back to Result List

Germination ecology of three endangered river corridor plants in relation to their preferred occurrence

  • As a contribution to conservation, we investigated germination requirements of three perennial, endangered river corridor plants of Central European lowlands coexisting in subcontinental flood meadows, but preferring particular zones of decreasing flooding frequency and duration along the elevational gradient of the banks. It was hypothesized that the species have specific germination requirements to respond successfully to open patch creation depending on their occurrence along the gradient of spring flooding in the field. This study involved controlled experiments and phenological studies. Juncus atratus and Gratiola officinalis, which frequently occupy flooded, naturally disturbed sites, have an absolute light requirement for germination, typical of pioneer species. Summer-dispersed, non-dormant seeds off. atratus did hardly germinate at high temperatures and lacked a gap sensitivity based on temperature fluctuation. Since the temperature amplitude decreases beneath an insulating cover of vegetation or water, seeds seem to beAs a contribution to conservation, we investigated germination requirements of three perennial, endangered river corridor plants of Central European lowlands coexisting in subcontinental flood meadows, but preferring particular zones of decreasing flooding frequency and duration along the elevational gradient of the banks. It was hypothesized that the species have specific germination requirements to respond successfully to open patch creation depending on their occurrence along the gradient of spring flooding in the field. This study involved controlled experiments and phenological studies. Juncus atratus and Gratiola officinalis, which frequently occupy flooded, naturally disturbed sites, have an absolute light requirement for germination, typical of pioneer species. Summer-dispersed, non-dormant seeds off. atratus did hardly germinate at high temperatures and lacked a gap sensitivity based on temperature fluctuation. Since the temperature amplitude decreases beneath an insulating cover of vegetation or water, seeds seem to be prepared for rapid germination at open, wet, maybe even inundated sites. Late-summer-dispersed seeds of G. officinalis were in a state of conditional primary dormancy. Dormancy could be completely broken by cold-wet stratification, indicating spring germination. Similar to J. atratus, daily temperature fluctuations did not control germination at suitable microsites. In Cnidium dubium that occurs at higher elevated sites, the level of primary dormancy of seeds was sufficient to prevent germination following dispersal, but the level was dependent on the year of harvest. Buried seeds showed an annual dormancy/conditional dormancy cycle. Dormancy was only partially broken by cold- wet stratification. It was completely broken by application of a high concentration of gibberellic acid. C. dubium had no absolute light requirement for germination, but it was stimulated by high light levels and in contrast to the other two species, seeds were stimulated by daily temperature fluctuations. Germination would therefore be maximized by zaps in early spring when the flooding water has receded. Re-entering dormancy in the late spring fails to support that germination occurs immediately after early-summer mowing - an important factor at subcontinental flood meadows.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Katja GeisslerORCiDGND, Axel Gzik
URL:http://www.sciencedirect.com/science/journal/03672530
DOI:https://doi.org/10.1016/j.flora.2010.04.008
ISSN:0367-2530
Publication type:Article
Language:English
Year of first publication:2010
Publication year:2010
Release date:2017/03/25
Source:Flora. - ISSN 0367-2530. - 205 (2010), 9, S. 590 - 598
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.