The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 28 of 2276
Back to Result List

Long-term erosion of the Nepal Himalayas by bedrock landsliding

  • In active mountain belts with steep terrain, bedrock landsliding is a major erosional agent. In the Himalayas, landsliding is driven by annual hydro-meteorological forcing due to the summer monsoon and by rarer, exceptional events, such as earthquakes. Independent methods yield erosion rate estimates that appear to increase with sampling time, suggesting that rare, high-magnitude erosion events dominate the erosional budget. Nevertheless, until now, neither the contribution of monsoon and earthquakes to landslide erosion nor the proportion of erosion due to rare, giant landslides have been quantified in the Himalayas. We address these challenges by combining and analysing earthquake- and monsoon-induced landslide inventories across different timescales. With time series of 5 m satellite images over four main valleys in central Nepal, we comprehensively mapped landslides caused by the monsoon from 2010 to 2018. We found no clear correlation between monsoon properties and landsliding and a similar mean landsliding rate for all valleys,In active mountain belts with steep terrain, bedrock landsliding is a major erosional agent. In the Himalayas, landsliding is driven by annual hydro-meteorological forcing due to the summer monsoon and by rarer, exceptional events, such as earthquakes. Independent methods yield erosion rate estimates that appear to increase with sampling time, suggesting that rare, high-magnitude erosion events dominate the erosional budget. Nevertheless, until now, neither the contribution of monsoon and earthquakes to landslide erosion nor the proportion of erosion due to rare, giant landslides have been quantified in the Himalayas. We address these challenges by combining and analysing earthquake- and monsoon-induced landslide inventories across different timescales. With time series of 5 m satellite images over four main valleys in central Nepal, we comprehensively mapped landslides caused by the monsoon from 2010 to 2018. We found no clear correlation between monsoon properties and landsliding and a similar mean landsliding rate for all valleys, except in 2015, where the valleys affected by the earthquake featured ∼ 5–8 times more landsliding than the pre-earthquake mean rate. The longterm size–frequency distribution of monsoon-induced landsliding (MIL) was derived from these inventories and from an inventory of landslides larger than ∼ 0.1 km 2 that occurred between 1972 and 2014. Using a published landslide inventory for the Gorkha 2015 earthquake, we derive the size–frequency distribution for earthquake-induced landsliding (EQIL). These two distributions are dominated by infrequent, large and giant landslides but under-predict an estimated Holocene frequency of giant landslides (> 1 km 3 ) which we derived from a literature compilation. This discrepancy can be resolved when modelling the effect of a full distribution of earthquakes of variable magnitude and when considering that a shallower earthquake may cause larger landslides. In this case, EQIL and MIL contribute about equally to a total long-term erosion of ∼ 2 ± 0.75 mm yr −1 in agreement with most thermo-chronological data. Independently of the specific total and relative erosion rates, the heavy-tailed size–frequency distribution from MIL and EQIL and the very large maximal landslide size in the Himalayas indicate that mean landslide erosion rates increase with sampling time, as has been observed for independent erosion estimates. Further, we find that the sampling timescale required to adequately capture the frequency of the largest landslides, which is necessary for deriving long-term mean erosion rates, is often much longer than the averaging time of cosmogenic 10 Be methods. This observation presents a strong caveat when interpreting spatial or temporal variability in erosion rates from this method. Thus, in areas where a very large, rare landslide contributes heavily to long-term erosion (as the Himalayas), we recommend 10 Be sample in catchments with source areas > 10 000 km 2 to reduce the method mean bias to below ∼ 20 % of the long-term erosion.show moreshow less

Download full text files

  • pmnr646.pdfeng
    (4249KB)

    SHA-1: 5eaa799f46b3e17631414b9193ca495a528c50a5

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Odin MarcORCiD, Robert Behling, Christoff AndermannORCiDGND, Jens M. TurowskiORCiD, Luc IllienORCiDGND, Sigrid Roessner, Niels HoviusORCiDGND
URN:urn:nbn:de:kobv:517-opus4-425022
DOI:https://doi.org/10.25932/publishup-42502
ISSN:1866-8372
Title of parent work (English):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Subtitle (English):the role of monsoons, earthquakes and giant landslides
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (646)
Publication type:Postprint
Language:English
Date of first publication:2019/02/22
Publication year:2019
Publishing institution:Universität Potsdam
Release date:2019/02/22
Tag:exhumation; global database; inventories; mountain belt; precipitation; rainfall thresholds; rates; river; sediment flux; size
Issue:646
Number of pages:22
Source:Earth Surface Dynamics 7 (2019), pp. 107–128 DOI 10.5194/esurf-7-107-2019
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.