The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 23 of 1387
Back to Result List

Numerical simulation of fluid-flow processes in a 3D high-resolution carbonate reservoir analogue

  • A high-resolution three-dimensional (3D) outcrop model of a Jurassic carbonate ramp was used in order to perform a series of detailed and systematic flow simulations. The aim of this study was to test the impact of small- and large-scale geological features on reservoir performance and oil recovery. The digital outcrop model contains a wide range of sedimentological, diagenetic and structural features, including discontinuity surfaces, shoal bodies, mud mounds, oyster bioherms and fractures. Flow simulations are performed for numerical well testing and secondary oil recovery. Numerical well testing enables synthetic but systematic pressure responses to be generated for different geological features observed in the outcrops. This allows us to assess and rank the relative impact of specific geological features on reservoir performance. The outcome documents that, owing to the realistic representation of matrix heterogeneity, most diagenetic and structural features cannot be linked to a unique pressure signature. Instead, reservoirA high-resolution three-dimensional (3D) outcrop model of a Jurassic carbonate ramp was used in order to perform a series of detailed and systematic flow simulations. The aim of this study was to test the impact of small- and large-scale geological features on reservoir performance and oil recovery. The digital outcrop model contains a wide range of sedimentological, diagenetic and structural features, including discontinuity surfaces, shoal bodies, mud mounds, oyster bioherms and fractures. Flow simulations are performed for numerical well testing and secondary oil recovery. Numerical well testing enables synthetic but systematic pressure responses to be generated for different geological features observed in the outcrops. This allows us to assess and rank the relative impact of specific geological features on reservoir performance. The outcome documents that, owing to the realistic representation of matrix heterogeneity, most diagenetic and structural features cannot be linked to a unique pressure signature. Instead, reservoir performance is controlled by subseismic faults and oyster bioherms acting as thief zones. Numerical simulations of secondary recovery processes reveal strong channelling of fluid flow into high-permeability layers as the primary control for oil recovery. However, appropriate reservoir-engineering solutions, such as optimizing well placement and injection fluid, can reduce channelling and increase oil recovery.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:S. Agada, F. Chen, S. Geiger, G. Toigulova, Susan M. Agar, R. Shekhar, Gregory S. Benson, O. Hehmeyer, Frédéric Amour, Maria MuttiORCiDGND, Nicolas ChristORCiDGND, A. Immenhauser
DOI:https://doi.org/10.1144/petgeo2012-096
ISSN:1354-0793
Title of parent work (English):Petroleum geoscience
Publisher:Geological Soc. Publ. House
Place of publishing:Bath
Publication type:Article
Language:English
Year of first publication:2014
Publication year:2014
Release date:2017/03/27
Volume:20
Issue:1
Number of pages:18
First page:125
Last Page:142
Funding institution:ExxonMobil (FC)Research Alliance; Foundation CMG
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.