• search hit 19 of 34
Back to Result List

Hydrological changes in western Central Asia (Kyrgyzstan) during the Holocene as inferred from a palaeolimnological study in lake Son Kul

  • The hydrology of western Central Asia is highly sensitive to climatic perturbations. In order to understand its long-term variability and to infer linkages between precipitation and atmospheric and oceanic systems, we conducted a thorough sedimentary and geochemical study on a composite core retrieved in lake Son Kul (central Kyrgyzstan). A multi-proxy approach was conducted on lake sediments based on grain size analyses, magnetic susceptibility, total organic carbon (TOC), total nitrogen (TN) and carbon and oxygen isotope analyses on bulk and biogenic materials (ostracoda and molluscs shells) at a resolution equivalent to ca 40 years, aiming to characterise the sequence of palaeolimnological changes in Son Kul. As indicated by delta O-18 record of bulk carbonates, mainly consisting of aragonite, the Holocene hydrological balance was negative during most of time, suggesting an excess of evaporation (E) over precipitation (P). Limnological conditions fluctuated rapidly before 5000 cal yr BP indicating significant changes in regionalThe hydrology of western Central Asia is highly sensitive to climatic perturbations. In order to understand its long-term variability and to infer linkages between precipitation and atmospheric and oceanic systems, we conducted a thorough sedimentary and geochemical study on a composite core retrieved in lake Son Kul (central Kyrgyzstan). A multi-proxy approach was conducted on lake sediments based on grain size analyses, magnetic susceptibility, total organic carbon (TOC), total nitrogen (TN) and carbon and oxygen isotope analyses on bulk and biogenic materials (ostracoda and molluscs shells) at a resolution equivalent to ca 40 years, aiming to characterise the sequence of palaeolimnological changes in Son Kul. As indicated by delta O-18 record of bulk carbonates, mainly consisting of aragonite, the Holocene hydrological balance was negative during most of time, suggesting an excess of evaporation (E) over precipitation (P). Limnological conditions fluctuated rapidly before 5000 cal yr BP indicating significant changes in regional hydrology and climate. In particular, the long-term negative hydrological balance was impeded by several short stages with marked increase of precipitation, lasting several decades to a few centuries (e.g., 8300-8200, 6900-6700, 6300-6100, 5500-5400, 5300-5200 and 3100 -3000 cal yr BP). Precipitation changes as inferred from 8180 data are also documented by increased minerogenic detritus and higher TOC. We propose that the seasonal pattern of precipitation varied transiently in western Central Asia during the Holocene, although evaporation changes may also account for the rapid changes observed in delta O-18 data. When the annual water balance was less critical (P <= E), the excess of water might be ascribed to increased precipitation during cold seasons mainly because winter precipitation has more negative delta O-18 than its summer equivalent. Conversely, when the annual water balance is negative (P E), the moisture was mainly delivered during the warm season, as between 5000 and 2000 cal yr BP. Our results thus imply that moisture sources could have changed as well during the Holocene. Moisture was delivered as today mainly during summer from the extended Caspian-Aral Basin and eastern Mediterranean, although Arctic and even North Atlantic seas might be important moisture sources when seasonal precipitation was dominated by winter precipitation. We hypothesise that warming Arctic and North Atlantic seas were important for the North Hemisphere circulation during the cold season. (C) 2014 Elsevier Ltd. All rights reserved.show moreshow less

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Xiangtong Huang, Hedi Oberhaensli, Hans von Suchodoletz, Sushma Prasad, Philippe Sorrel, Birgit Plessen, Marie Mathis, Raskul Usubaliev
DOI:https://doi.org/10.1016/j.quascirev.2014.09.012
ISSN:0277-3791 (print)
Parent Title (English):Quaternary science reviews : the international multidisciplinary research and review journal
Publisher:Elsevier
Place of publication:Oxford
Document Type:Article
Language:English
Year of first Publication:2014
Year of Completion:2014
Release Date:2017/03/27
Tag:Holocene; Hydrological balance; Oxygen and carbon isotopes; Tien Shan (western Central Asia)
Volume:103
Pagenumber:19
First Page:134
Last Page:152
Funder:Helmholtz - CSC; Natural Science Foundation of China [40902046, 91128208]; Shanghai Committee of Science and Technology, China [13ZR1443500, 14XD1403600]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Peer Review:Referiert