• search hit 12 of 81
Back to Result List

p53 as a dichotomous regulator of liver disease

  • Lifestyle-related disorders, such as the metabolic syndrome, have become a primary risk factor for the development of liver pathologies that can progress from hepatic steatosis, hepatic insulin resistance, steatohepatitis, fibrosis and cirrhosis, to the most severe condition of hepatocellular carcinoma (HCC). While the prevalence of liver pathologies is steadily increasing in modern societies, there are currently no approved drugs other than chemotherapeutic intervention in late stage HCC. Hence, there is a pressing need to identify and investigate causative molecular pathways that can yield new therapeutic avenues. The transcription factor p53 is well established as a tumor suppressor and has recently been described as a central metabolic player both in physiological and pathological settings. Given that liver is a dynamic tissue with direct exposition to ingested nutrients, hepatic p53, by integrating cellular stress response, metabolism and cell cycle regulation, has emerged as an important regulator of liver homeostasis andLifestyle-related disorders, such as the metabolic syndrome, have become a primary risk factor for the development of liver pathologies that can progress from hepatic steatosis, hepatic insulin resistance, steatohepatitis, fibrosis and cirrhosis, to the most severe condition of hepatocellular carcinoma (HCC). While the prevalence of liver pathologies is steadily increasing in modern societies, there are currently no approved drugs other than chemotherapeutic intervention in late stage HCC. Hence, there is a pressing need to identify and investigate causative molecular pathways that can yield new therapeutic avenues. The transcription factor p53 is well established as a tumor suppressor and has recently been described as a central metabolic player both in physiological and pathological settings. Given that liver is a dynamic tissue with direct exposition to ingested nutrients, hepatic p53, by integrating cellular stress response, metabolism and cell cycle regulation, has emerged as an important regulator of liver homeostasis and dysfunction. The underlying evidence is reviewed herein, with a focus on clinical data and animal studies that highlight a direct influence of p53 activity on different stages of liver diseases. Based on current literature showing that activation of p53 signaling can either attenuate or fuel liver disease, we herein discuss the hypothesis that, while hyper-activation or loss of function can cause disease, moderate induction of hepatic p53 within physiological margins could be beneficial in the prevention and treatment of liver pathologies. Hence, stimuli that lead to a moderate and temporary p53 activation could present new therapeutic approaches through several entry points in the cascade from hepatic steatosis to HCC.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jelena KrsticORCiD, Markus Galhuber, Tim Julius SchulzORCiDGND, Michael Schupp, Andreas Prokesch
DOI:https://doi.org/10.3390/ijms19030921
ISSN:1422-0067
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/29558460
Title of parent work (English):International journal of molecular sciences
Subtitle (English):the dose makes the medicine
Publisher:MDPI
Place of publishing:Basel
Publication type:Review
Language:English
Date of first publication:2018/03/20
Publication year:2018
Release date:2022/01/12
Tag:hepatocellular carcinoma; insulin resistance; liver disease; liver regeneration; mouse models; non-alcoholic fatty liver disease; non-alcoholic steatohepatitis; p53
Volume:19
Issue:3
Number of pages:23
Funding institution:Austrian Science Fund (FWF)Austrian Science Fund (FWF) [P29328, I3165]; MEFO grant from the Medical University of Graz; European Research CouncilEuropean Research Council (ERC) [ERC-StG 311082]; German Research Foundation (DFG)German Research Foundation (DFG) [SCHU 2445/2-1, SCHU 2445/5-1, SCHU 2546/4-1]; German Ministry of Education and Research (BMBF)Federal Ministry of Education & Research (BMBF); State of Brandenburg (DZD Grant) [82DZD00302]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Ernährungswissenschaft
DDC classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.