• search hit 1 of 0
Back to Result List

Crystallization conditions and petrogenesis of the lava dome from the similar to 900 years BP eruption of Cerro Machin Volcano, Colombia

  • The last known eruption at Cerro Machin Volcano (CMV) in the Central Cordillera of Colombia occurred 900 years BP and ended with the formation of a dacitic lava dome. The dome rocks contain both normally and reversely zoned plagioclase (An(24-54)), unzoned and reversely zoned amphiboles of dominantly tschermakite and pargasite/magnesio-hastingsite composition and olivine xenocrysts (Fo = 85-88) with amphibole/clinopyroxene overgrowth, all suggesting interaction with mafic magma at depth. Plagioclase additionally exhibits complex oscillatory zoning patterns reflecting repeated replenishment, fractionation and changes in intrinsic conditions in the magma reservoir. Unzoned amphiboles and cores of the reversely zoned amphiboles give identical crystallization conditions of 910 +/- 30 degrees C and 360 +/- 70 MPa, corresponding to a depth of about 13 +/- 2 km, at moderately oxidized conditions (f(O2) = +0.5 +/- 0.2 Delta NNO). The water content in the melt, calculated based on amphibole chemistry, is 7.1 +/- 0.4 wt.%. Rims of the reverselyThe last known eruption at Cerro Machin Volcano (CMV) in the Central Cordillera of Colombia occurred 900 years BP and ended with the formation of a dacitic lava dome. The dome rocks contain both normally and reversely zoned plagioclase (An(24-54)), unzoned and reversely zoned amphiboles of dominantly tschermakite and pargasite/magnesio-hastingsite composition and olivine xenocrysts (Fo = 85-88) with amphibole/clinopyroxene overgrowth, all suggesting interaction with mafic magma at depth. Plagioclase additionally exhibits complex oscillatory zoning patterns reflecting repeated replenishment, fractionation and changes in intrinsic conditions in the magma reservoir. Unzoned amphiboles and cores of the reversely zoned amphiboles give identical crystallization conditions of 910 +/- 30 degrees C and 360 +/- 70 MPa, corresponding to a depth of about 13 +/- 2 km, at moderately oxidized conditions (f(O2) = +0.5 +/- 0.2 Delta NNO). The water content in the melt, calculated based on amphibole chemistry, is 7.1 +/- 0.4 wt.%. Rims of the reversely zoned amphiboles are relatively enriched in MgO and yield higher crystallization temperatures (T = 970 +/- 25 degrees C), slightly lower melt H2O contents (6.1 +/- 0.7 wt.%) and overlapping pressures (410 +/- 100 MPa). We suggest that these rims crystallized following an influx of mafic melt into a resident magma reservoir at mid-crustal depths, further supported by the occurrence of xenocrystic olivine. Crystallization of biotite, albite-rich plagioclase and quartz occurred at comparatively low temperatures (probably <800 degrees C) during early stages of ascent or storage at shallower levels. Based on amphibole mineral chemistry, the felsic resident melt had a rhyolitic composition (71 +/- 2 wt.% SiO2), whereas the hybrid magma, from which the amphibole rims crystallized, was dacitic (64 +/- 3 wt.% SiO2). The bulk rock chemistry of the CMV lava dome dacites is homogenous. They have elevated (La/Nb)(N) ratios of 3.8-4.5, typical for convergent margin magmas, and display several geochemical characteristics, of adakites. Both Sr and Nd isotope compositions (Sr-87/Sr-86 similar to 0.70497, Nd-143/Nd-144 similar to 0.51267) are among the most radiogenic observed for the Northern Volcanic Zone of the Andes. They are distinct from oceanic crust that has been subducted in the region, pointing to a continental crustal control on the isotope composition and hence the adakitic signature, possibly in a crustal "hot zone".show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Kathrin Läger, Ralf HalamaORCiD, Thor Hansteen, Ivan P. Savov, Hugo F. Murcia, Gloria P. Cortes, Dieter Garbe-Schönberg
DOI:https://doi.org/10.1016/j.jsames.2013.09.009
ISSN:0895-9811
Title of parent work (English):Journal of South American earth sciences
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:Amphibole geothermobarometry; Cerro Machin Volcano; Colombian Andes; Magma mixing; Trace element geochemistry
Volume:48
Issue:12
Number of pages:16
First page:193
Last Page:208
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.