• search hit 21 of 1375
Back to Result List

Layer specific observation of slow thermal equilibration in ultrathin metallic nanostructures by femtosecond X-ray diffraction

  • Ultrafast heat transport in nanoscale metal multilayers is of great interest in the context of optically induced demagnetization, remagnetization and switching. If the penetration depth of light exceeds the bilayer thickness, layer-specific information is unavailable from optical probes. Femtosecond diffraction experiments provide unique experimental access to heat transport over single digit nanometer distances. Here, we investigate the structural response and the energy flow in the ultrathin double-layer system: gold on ferromagnetic nickel. Even though the excitation pulse is incident from the Au side, we observe a very rapid heating of the Ni lattice, whereas the Au lattice initially remains cold. The subsequent heat transfer from Ni to the Au lattice is found to be two orders of magnitude slower than predicted by the conventional heat equation and much slower than electron-phonon coupling times in Au. We present a simplified model calculation highlighting the relevant thermophysical quantities.

Download full text files

  • SHA-1: 093bb39143a321493797f4d23c19be3683bbca46

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Jan Etienne Pudell, Alexei Maznev, Marc HerzogGND, M. Kronseder, Christian BackORCiD, Gregory MalinowskiORCiD, Alexander von ReppertORCiD, Matias BargheerORCiDGND
URN:urn:nbn:de:kobv:517-opus4-426233
DOI:https://doi.org/10.25932/publishup-42623
ISSN:1866-8372
Parent Title (German):Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe
Series (Serial Number):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (797)
Document Type:Postprint
Language:English
Date of first Publication:2019/12/16
Year of Completion:2018
Publishing Institution:Universität Potsdam
Release Date:2019/12/16
Tag:dynamics; electron; gold; heat-capacity; optical-excitation; thin magnetic layers
Issue:797
Pagenumber:7
Source:Nature Communications 9 (2018) Art. 3335 DOI: 10.1038/s41467-018-05693-5
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Peer Review:Referiert
Publication Way:Open Access
Licence (German):License LogoCreative Commons - Namensnennung, 4.0 International