The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 10 of 3537
Back to Result List

Regional changes in streamflow after a megathrust earthquake

  • Moderate to large earthquakes can increase the amount of water feeding stream flows, mobilizing excess water from deep groundwater, shallow groundwater, or the vadose zone. Here we examine the regional pattern of streamflow response to the Maule M8.8 earthquake across Chile's diverse topographic and hydro-climatic gradients. We combine streamflow analyses with groundwater flow modeling and a random forest classifier, and find that, after the earthquake, at least 85 streams had a change in flow. Discharge mostly increased () shortly after the earthquake, liberating an excess water volume of >1.1 km3, which is the largest ever reported following an earthquake. Several catchments had increased discharge of >50 mm, locally exceeding seasonal streamflow discharge under undisturbed conditions. Our modeling results favor enhanced vertical permeability induced by dynamic strain as the most probable process explaining the observed changes at the regional scale. Supporting this interpretation, our random forest classification identifies peakModerate to large earthquakes can increase the amount of water feeding stream flows, mobilizing excess water from deep groundwater, shallow groundwater, or the vadose zone. Here we examine the regional pattern of streamflow response to the Maule M8.8 earthquake across Chile's diverse topographic and hydro-climatic gradients. We combine streamflow analyses with groundwater flow modeling and a random forest classifier, and find that, after the earthquake, at least 85 streams had a change in flow. Discharge mostly increased () shortly after the earthquake, liberating an excess water volume of >1.1 km3, which is the largest ever reported following an earthquake. Several catchments had increased discharge of >50 mm, locally exceeding seasonal streamflow discharge under undisturbed conditions. Our modeling results favor enhanced vertical permeability induced by dynamic strain as the most probable process explaining the observed changes at the regional scale. Supporting this interpretation, our random forest classification identifies peak ground velocity and elevation extremes as most important for predicting streamflow response. Given the mean recurrence interval of ∼25 yr for >M8.0 earthquakes along the Peru–Chile Trench, our observations highlight the role of earthquakes in the regional water cycle, especially in arid environments.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Christian Heinrich MohrORCiDGND, Michael Manga, Chi-Yuen Wang, Oliver KorupORCiDGND
DOI:https://doi.org/10.1016/j.epsl.2016.11.013
ISSN:0012-821X
ISSN:1385-013X
Title of parent work (English):Earth & planetary science letters
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Date of first publication:2016/12/09
Publication year:2017
Release date:2022/07/07
Tag:Maule earthquake; earthquake hydrology; groundwater flow modeling; permeability; streamflow response
Volume:458
Number of pages:11
First page:418
Last Page:428
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.