The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 42 of 3542
Back to Result List

Age and Petrogenesis of the Doros Complex, Namibia, and Implications for Early Plume-derived Melts in the Parana-Etendeka LIP

  • The early Cretaceous Paraná–Etendeka Large Igneous Province is attributed to the impact of the Tristan mantle plume on the base of the continental lithosphere and the associated opening of the South Atlantic Ocean during the breakup of West Gondwana. Although the geochemistry of the Paraná and Etendeka volcanic rocks has been extensively studied, there is still disagreement on the role of the mantle plume in the production of the magma types observed, because some of their primary compositions are obscured by continental crustal contamination. However, there are related plutonic rocks that preserve mantle signatures. The Doros Complex is a shallow-level mafic intrusion within the Etendeka Province of Namibia. New 39Ar/40Ar step-heating ages for Doros gabbros from this study (weighted mean of 130 ± 1 Ma; 2σ error) confirm contemporaneity with the Paraná–Etendeka magmatic event. The Doros suite yields mean ɛNd values of +5·3 ± 1·0 (1σ; n = 11), initial 87Sr/86Sr = 0·70418 ± 0·00017 (n = 11) and 206Pb/204Pb = 18·11 ± 0·06 (n = 13) atThe early Cretaceous Paraná–Etendeka Large Igneous Province is attributed to the impact of the Tristan mantle plume on the base of the continental lithosphere and the associated opening of the South Atlantic Ocean during the breakup of West Gondwana. Although the geochemistry of the Paraná and Etendeka volcanic rocks has been extensively studied, there is still disagreement on the role of the mantle plume in the production of the magma types observed, because some of their primary compositions are obscured by continental crustal contamination. However, there are related plutonic rocks that preserve mantle signatures. The Doros Complex is a shallow-level mafic intrusion within the Etendeka Province of Namibia. New 39Ar/40Ar step-heating ages for Doros gabbros from this study (weighted mean of 130 ± 1 Ma; 2σ error) confirm contemporaneity with the Paraná–Etendeka magmatic event. The Doros suite yields mean ɛNd values of +5·3 ± 1·0 (1σ; n = 11), initial 87Sr/86Sr = 0·70418 ± 0·00017 (n = 11) and 206Pb/204Pb = 18·11 ± 0·06 (n = 13) at 132 Ma. The clustering of isotopic data and trends in incompatible trace element ratios indicate that all the magmas in the complex were derived from the same mantle source components, during the same melting episode. By quantitative isotopic modelling of mixing processes, we constrain the Doros parental magma to comprise 60–80% melt of a depleted asthenospheric mantle component and 20–40% melt of a more enriched, Tristan plume-derived, asthenospheric component. No lithospheric mantle component is required to explain the Doros magma compositions. The chilled margin to the complex is the only rock type that shows evidence of significant continental crustal contamination, by assimilation of the metasedimentary host-rock upon emplacement. The identification of a substantial Tristan plume component in the Doros source confirms the integral role of the deep-seated thermal anomaly in Paraná–Etendeka magmatism. We show, in addition, that the Doros suite has consistent, strong geochemical affinities with the Tafelkop group ‘ferropicrite’ lavas of the Etendeka Province. This provides crucial evidence in support of Doros as the eruptive site for the Tafelkop lavas, thereby linking the Doros magmatism to the earliest eruptive phase in the Etendeka event. The distinctive chemistry of this magma group has been attributed to relatively deep decompression melting of pyroxenite-bearing material in the heterogeneous Tristan plume head, related to the initial impact of the plume on the base of the lithosphere.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:T. M. Owen-Smith, L. D. Ashwal, Masafumi SudoORCiDGND, Robert B. TrumbullORCiD
DOI:https://doi.org/10.1093/petrology/egx021
ISSN:0022-3530
ISSN:1460-2415
Title of parent work (English):Journal of petrology
Publisher:Oxford Univ. Press
Place of publishing:Oxford
Publication type:Article
Language:English
Date of first publication:2017/06/10
Publication year:2017
Release date:2022/06/17
Tag:Parana-Etendeka Large Igneous Province; Tristan mantle plume; ferropicrite magmas; layered mafic intrusion; radiogenic isotopes
Volume:58
Issue:3
Number of pages:20
First page:423
Last Page:442
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.