• Treffer 31 von 135
Zurück zur Trefferliste

Gold and silver nanolenses self-assembled by DNA origami

Gold- und Silbernanolinsen, selbstassembliert durch DNA-Origami

  • Nanolenses are linear chains of differently-sized metal nanoparticles, which can theoretically provide extremely high field enhancements. The complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, the technique of DNA origami was used to self-assemble DNA-coated 10 nm, 20 nm, and 60 nm gold or silver nanoparticles into gold or silver nanolenses. Three different geometrical arrangements of gold nanolenses were assembled, and for each of the three, sets of single gold nanolenses were investigated in detail by atomic force microscopy, scanning electron microscopy, dark-field scattering and Raman spectroscopy. The surface-enhanced Raman scattering (SERS) capabilities of the single nanolenses were assessed by labelling the 10 nm gold nanoparticle selectively with dye molecules. The experimental data was complemented by finite-difference time-domain simulations. For those gold nanolenses which showed the strongest field enhancement, SERS signals from the two different internal gaps were comparedNanolenses are linear chains of differently-sized metal nanoparticles, which can theoretically provide extremely high field enhancements. The complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, the technique of DNA origami was used to self-assemble DNA-coated 10 nm, 20 nm, and 60 nm gold or silver nanoparticles into gold or silver nanolenses. Three different geometrical arrangements of gold nanolenses were assembled, and for each of the three, sets of single gold nanolenses were investigated in detail by atomic force microscopy, scanning electron microscopy, dark-field scattering and Raman spectroscopy. The surface-enhanced Raman scattering (SERS) capabilities of the single nanolenses were assessed by labelling the 10 nm gold nanoparticle selectively with dye molecules. The experimental data was complemented by finite-difference time-domain simulations. For those gold nanolenses which showed the strongest field enhancement, SERS signals from the two different internal gaps were compared by selectively placing probe dyes on the 20 nm or 60 nm gold particles. The highest enhancement was found for the gap between the 20 nm and 10 nm nanoparticle, which is indicative of a cascaded field enhancement. The protein streptavidin was labelled with alkyne groups and served as a biological model analyte, bound between the 20 nm and 10 nm particle of silver nanolenses. Thereby, a SERS signal from a single streptavidin could be detected. Background peaks observed in SERS measurements on single silver nanolenses could be attributed to amorphous carbon. It was shown that the amorphous carbon is generated in situ.zeige mehrzeige weniger
  • Nanolinsen sind Strukturen aus linear angeordneten, unterschiedlich großen metallischen Nanopartikeln. Elektromagnetische Felder können durch sie theoretisch extrem verstärkt werden, aufgrund ihres komplexen Aufbaus sind sie bislang aber wenig erforscht. Im Rahmen dieser Dissertation wurden Nanolinsen mit Hilfe der DNA-Origami-Technik aus DNA-beschichteten 10 nm-, 20 nm- und 60 nm-Gold- oder Silbernanopartikeln hergestellt. Für Goldnanolinsen sind die Partikel dabei in drei unterschiedlichen Geometrien angeordnet worden. Einzelne Goldnanolinsen wurden mittels Rasterkraftmikroskopie, Rasterelektronenmikroskopie, Dunkelfeld- und Ramanspektroskopie untersucht. Um die Raman-Verstärkung quantifizieren zu können, trugen dabei jeweils die 10 nm-Goldpartikel Farbstoffmoleküle in ihrer Beschichtung. Die Interpretation der Messdaten wurde durch numerische Simulationen unterstützt. Nanolinsen zeichnen sich durch eine stufenweise Feldverstärkung aus. Dieser Effekt konnte experimentell bestätigt werden, indem selektiv die 20 nm- oder 60Nanolinsen sind Strukturen aus linear angeordneten, unterschiedlich großen metallischen Nanopartikeln. Elektromagnetische Felder können durch sie theoretisch extrem verstärkt werden, aufgrund ihres komplexen Aufbaus sind sie bislang aber wenig erforscht. Im Rahmen dieser Dissertation wurden Nanolinsen mit Hilfe der DNA-Origami-Technik aus DNA-beschichteten 10 nm-, 20 nm- und 60 nm-Gold- oder Silbernanopartikeln hergestellt. Für Goldnanolinsen sind die Partikel dabei in drei unterschiedlichen Geometrien angeordnet worden. Einzelne Goldnanolinsen wurden mittels Rasterkraftmikroskopie, Rasterelektronenmikroskopie, Dunkelfeld- und Ramanspektroskopie untersucht. Um die Raman-Verstärkung quantifizieren zu können, trugen dabei jeweils die 10 nm-Goldpartikel Farbstoffmoleküle in ihrer Beschichtung. Die Interpretation der Messdaten wurde durch numerische Simulationen unterstützt. Nanolinsen zeichnen sich durch eine stufenweise Feldverstärkung aus. Dieser Effekt konnte experimentell bestätigt werden, indem selektiv die 20 nm- oder 60 nm-Partikel von Goldnanolinsen mit Farbstoffen markiert und die resultierenden Raman-Signale verglichen wurden. Ein mit Alkingruppen markiertes Protein ist ortsselektiv in Silbernanolinsen integriert worden. Es war möglich, das für das Alkin charakteristische oberflächenverstärkte Raman-Signal im Spektrum einer einzelnen Nanolinse und damit eines einzelnen Proteins zu beobachten. Bei den Messungen mit Silbernanolinsen sind für amorphe Kohlenstoffspezies charakterstische Hintergrundsignale beobachtet worden. Durch zeitabhängige Messungen konnte gezeigt werden, dass diese Spezies erst in situ gebildet werden.zeige mehrzeige weniger

Volltext Dateien herunterladen

  • diss_heck.pdfeng
    (25443KB)

    SHA-1:ede43520bd14406e622228d82452b76db57370b9

Metadaten exportieren

Metadaten
Verfasserangaben:Christian HeckORCiDGND
URN:urn:nbn:de:kobv:517-opus4-409002
Betreuer*in(nen):Ilko Bald
Publikationstyp:Dissertation
Sprache:Englisch
Datum der Erstveröffentlichung:26.04.2018
Erscheinungsjahr:2017
Veröffentlichende Institution:Universität Potsdam
Titel verleihende Institution:Universität Potsdam
Datum der Abschlussprüfung:28.02.2018
Datum der Freischaltung:26.04.2018
Freies Schlagwort / Tag:DNA-Origami; Goldnanopartikel; Nanolinsen; Plasmonik; SERS; Selbstassemblierung; Silbernanopartikel
DNA origami; SERS; gold nanoparticles; nanolenses; plasmonics; self-assembly; silver nanoparticles
Seitenanzahl:ix, 125
RVK - Regensburger Verbundklassifikation:VE 9857
Organisationseinheiten:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Lizenz (Deutsch):License LogoCC-BY-NC - Namensnennung, nicht kommerziell 4.0 International
Verstanden ✔
Diese Webseite verwendet technisch erforderliche Session-Cookies. Durch die weitere Nutzung der Webseite stimmen Sie diesem zu. Unsere Datenschutzerklärung finden Sie hier.