The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 24 of 1098
Back to Result List

Effect of aridity on delta C-13 and delta D values of C-3 plant- and C-4 graminoid-derived leaf wax lipids from soils along an environmental gradient in Cameroon (Western Central Africa)

  • The observation that the hydrogen isotope composition (delta D) of leaf wax lipids is determined mainly by precipitation delta D values, has resulted in the application of these biomarkers to reconstruct paleoclimate from geological records. However, because the delta D values of leaf wax lipids are additionally affected by vegetation type and ecosystem evapotranspiration, paleoclimatic reconstruction remains at best semi-quantitative. Here, we used published results for the carbon isotope composition (delta C-13) of n-alkanes in common plants along a latitudinal gradient in C-3/C-4 vegetation and relative humidity in Cameroon and demonstrated that pentacyclic triterpene methyl ethers (PTMEs) and n-C-29 and n-C-31 in the same soil, derived mainly from C-4 graminoids (e.g. grass) and C-3 plants (e.g. trees and shrubs), respectively. We found that the delta D values of soil n-C-27, n-C29 and n-C-31, and PTMEs correlated significantly with surface water delta D values, supporting previous observations that leaf wax lipid delta D valuesThe observation that the hydrogen isotope composition (delta D) of leaf wax lipids is determined mainly by precipitation delta D values, has resulted in the application of these biomarkers to reconstruct paleoclimate from geological records. However, because the delta D values of leaf wax lipids are additionally affected by vegetation type and ecosystem evapotranspiration, paleoclimatic reconstruction remains at best semi-quantitative. Here, we used published results for the carbon isotope composition (delta C-13) of n-alkanes in common plants along a latitudinal gradient in C-3/C-4 vegetation and relative humidity in Cameroon and demonstrated that pentacyclic triterpene methyl ethers (PTMEs) and n-C-29 and n-C-31 in the same soil, derived mainly from C-4 graminoids (e.g. grass) and C-3 plants (e.g. trees and shrubs), respectively. We found that the delta D values of soil n-C-27, n-C29 and n-C-31, and PTMEs correlated significantly with surface water delta D values, supporting previous observations that leaf wax lipid delta D values are an effective proxy for reconstructing precipitation delta D values even if plant types changed significantly. The apparent fractionation (epsilon(app)) between leaf wax lipid and precipitation delta D values remained relatively constant for C-3-derived long chain n-alkanes, whereas eapp of C-4-derived PTMEs decreased by 20 parts per thousand along the latitudinal gradient encompassing a relative humidity range from 80% to 45%. Our results indicate that PTME delta D values derived from C-4 graminoids may be a more reliable paleo-ecohydrological proxy for ecosystem evapotranspiration within tropical and sub-tropical Africa than n-alkane delta D values, the latter being a better proxy for surface water delta D values. We suggest that vegetation changes associated with different plant water sources and/or difference in timing of leaf wax synthesis between C-3 trees of the transitional class and C-3 shrubs of the savanna resulted in a D depletion in soil long chain n-alkanes, thereby counteracting the effect of evapotranspiration D enrichment along the gradient. In contrast, evaporative D enrichment of leaf and soil water was significant enough to be recorded in the delta D values of PTMEs derived from C-4 graminoids, likely because PTMEs recorded the hydrogen isotopic composition of the same vegetation type.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Valerie F. Schwab, Yannick GarcinORCiD, Dirk SachseORCiDGND, Gilbert Todou, Olivier Sene, Jean-Michel Onana, Gaston Achoundong, Gerd Gleixner
DOI:https://doi.org/10.1016/j.orggeochem.2014.09.007
ISSN:0146-6380
Title of parent work (English):Organic geochemistry : the international journal for rapid publication of current research in organic geochemistry and biochemistry
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Tag:Climate; Compound-specific isotope; D-enrichment; Evapotranspiration; PTMEs; Paleo; Pentacyclic triterpene methyl ethers; Proxy; n-Alkane
Volume:78
Number of pages:11
First page:99
Last Page:109
Funding institution:MPI-BGC Jena; German Science Foundation (DFG) [GA-1629/1-1, GA-1629/1-2]; DFG Emmy-Noether Programme [SA-1889/1-1]; DFG Leibniz Center for Surface Process and Climate Studies at Potsdam University
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.