• search hit 38 of 0
Back to Result List

Effects of climatic factors and soil management on the methane flux in soils from annual and perennial energy crops

  • Methane flux rates were measured on a loamy sand soil within perennial and annual energy crops in northeast Germany. The study was performed in closed chambers between 2003 and 2005 with four measurements per week. A mixed linear model including the fixed effects of year, rotation period, crop and fertilisation was applied to determine the influence of climatic factors and soil management on the CH4 flux. Soil water content and air temperature were added as co-variables. With the exception of air temperature, all fixed effects and the co-variable soil water content influenced the CH4 flux. The soil of annual crops consumed 6.1 mu g CH4 m(-2) h(-1), significantly more than the soil of perennial crops with 4.3 mu g CH4 m(-2) h(-1). It is suggested that soil water content plays the key role in CH4 flux between pedosphere and atmosphere. In the range of water contents between 5% and 15%, our model describes that a soil water content increase of 1% induces a net emission of 0.375 mu g CH4 m(-2) h(-1). As the soil of the experimental fieldMethane flux rates were measured on a loamy sand soil within perennial and annual energy crops in northeast Germany. The study was performed in closed chambers between 2003 and 2005 with four measurements per week. A mixed linear model including the fixed effects of year, rotation period, crop and fertilisation was applied to determine the influence of climatic factors and soil management on the CH4 flux. Soil water content and air temperature were added as co-variables. With the exception of air temperature, all fixed effects and the co-variable soil water content influenced the CH4 flux. The soil of annual crops consumed 6.1 mu g CH4 m(-2) h(-1), significantly more than the soil of perennial crops with 4.3 mu g CH4 m(-2) h(-1). It is suggested that soil water content plays the key role in CH4 flux between pedosphere and atmosphere. In the range of water contents between 5% and 15%, our model describes that a soil water content increase of 1% induces a net emission of 0.375 mu g CH4 m(-2) h(-1). As the soil of the experimental field was well-drained and aerobic, it represented a net sink for CH4 throughout the study period.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jürgen Kern, Hans Jürgen Hellebrand, Michael Gömmel, Christian Ammon, Werner Berg
DOI:https://doi.org/10.1007/s00374-011-0603-z
ISSN:0178-2762
Title of parent work (English):Biology and fertility of soils
Publisher:Springer
Place of publishing:New York
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:ANCOVA model; Energy crops; Fertilisation; Greenhouse gases; Methane oxidation; Soil water
Volume:48
Issue:1
Number of pages:8
First page:1
Last Page:8
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Umweltwissenschaften und Geographie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geographie und Geoökologie
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geoökologie
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.