• search hit 35 of 178
Back to Result List

Optically induced mass transport studied by scanning near-field optical- and atomic force microscopy

  • Some functionalised thin organic films show a very unusual property, namely the light induced material transport. This effect enables to generate three-dimensional structures on surfaces of azobenzene containing films only caused by special optical excitation. The physical mechanisms underlying this phenomenon have not yet been fully understood, and in addition, the dimensions of structures created in that way are macroscopic because of the optical techniques and the wavelength of the used light. In order to gain deeper insight into the physical fundamentals of this phenomenon and to open possibilities for applications it is necessary to create and study structures not only in a macroscopic but also in nanometer range. We first report about experiments to generate optically induced nano structures even down to 100 nm size. The optical stimulation was therefore made by a Scanning Near-field Optical Microscope (SNOM). Secondly, physical conditions inside optically generated surface relief gratings were studied by measuring mechanicalSome functionalised thin organic films show a very unusual property, namely the light induced material transport. This effect enables to generate three-dimensional structures on surfaces of azobenzene containing films only caused by special optical excitation. The physical mechanisms underlying this phenomenon have not yet been fully understood, and in addition, the dimensions of structures created in that way are macroscopic because of the optical techniques and the wavelength of the used light. In order to gain deeper insight into the physical fundamentals of this phenomenon and to open possibilities for applications it is necessary to create and study structures not only in a macroscopic but also in nanometer range. We first report about experiments to generate optically induced nano structures even down to 100 nm size. The optical stimulation was therefore made by a Scanning Near-field Optical Microscope (SNOM). Secondly, physical conditions inside optically generated surface relief gratings were studied by measuring mechanical properties with high lateral resolution via pulse force mode and force distance curves of an AFMshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Burkhard Stiller, Peter Karageorgiev, Thomas Geue, Knut Morawetz, Marina SaphiannikovaORCiD, Norman Mechau, Dieter NeherORCiDGND
ISSN:0204-3467
Publication type:Article
Language:English
Year of first publication:2004
Publication year:2004
Release date:2017/03/24
Source:Physics of Low-Dimensional Structures. - ISSN 0204-3467. - 1-2 (2004), S. 129 - 137
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.