• search hit 50 of 178
Back to Result List

Linear viscoelastic analysis of formation and relaxation of azobenzene polymer gratings

  • Surface relief gratings on azobenzene containing polymer films were prepared under irradiation by actinic light. Finite element modeling of the inscription process was carried out using linear viscoelastic analysis. It was assumed that under illumination the polymer film undergoes considerable plastification, which reduces its original Young's modulus by at least three orders of magnitude. Force densities of about 10(11) N/m(3) were necessary to reproduce the growth of the surface relief grating. It was shown that at large deformations the force of surface tension becomes comparable to the inscription force and therefore plays an essential role in the retardation of the inscription process. In addition to surface profiling the gradual development of an accompanying density grating was predicted for the regime of continuous exposure. Surface grating development under pulselike exposure cannot be explained in the frame of an incompressible fluid model. However, it was easily reproduced using the viscoelastic model with finiteSurface relief gratings on azobenzene containing polymer films were prepared under irradiation by actinic light. Finite element modeling of the inscription process was carried out using linear viscoelastic analysis. It was assumed that under illumination the polymer film undergoes considerable plastification, which reduces its original Young's modulus by at least three orders of magnitude. Force densities of about 10(11) N/m(3) were necessary to reproduce the growth of the surface relief grating. It was shown that at large deformations the force of surface tension becomes comparable to the inscription force and therefore plays an essential role in the retardation of the inscription process. In addition to surface profiling the gradual development of an accompanying density grating was predicted for the regime of continuous exposure. Surface grating development under pulselike exposure cannot be explained in the frame of an incompressible fluid model. However, it was easily reproduced using the viscoelastic model with finite compressibility. (C) 2004 American Institute of Physicsshow moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Marina SaphiannikovaORCiD, Thomas Geue, Oliver Henneberg, Knut Morawetz, Ullrich Pietsch
DOI:https://doi.org/10.1063/1.1642606
Publication type:Article
Language:English
Year of first publication:2004
Publication year:2004
Release date:2017/03/24
Source:Journal of chemical physics. - 120 (2004), 8, S. 4039 - 4045
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.