The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 16 of 481
Back to Result List

Structural mapping of missense mutations in the Pex1/Pex6 complex

  • Peroxisome biogenesis disorders (PBDs) are nontreatable hereditary diseases with a broad range of severity. Approximately 65% of patients are affected by mutations in the peroxins Pex1 and Pex6. The proteins form the heteromeric Pex1/Pex6 complex, which is important for protein import into peroxisomes. To date, no structural data are available for this AAA+ ATPase complex. However, a wealth of information can be transferred from low-resolution structures of the yeast scPex1/scPex6 complex and homologous, well-characterized AAA+ ATPases. We review the abundant records of missense mutations described in PBD patients with the aim to classify and rationalize them by mapping them onto a homology model of the human Pex1/Pex6 complex. Several mutations concern functionally conserved residues that are implied in ATP hydrolysis and substrate processing. Contrary to fold destabilizing mutations, patients suffering from function-impairing mutations may not benefit from stabilizing agents, which have been reported as potential therapeutics forPeroxisome biogenesis disorders (PBDs) are nontreatable hereditary diseases with a broad range of severity. Approximately 65% of patients are affected by mutations in the peroxins Pex1 and Pex6. The proteins form the heteromeric Pex1/Pex6 complex, which is important for protein import into peroxisomes. To date, no structural data are available for this AAA+ ATPase complex. However, a wealth of information can be transferred from low-resolution structures of the yeast scPex1/scPex6 complex and homologous, well-characterized AAA+ ATPases. We review the abundant records of missense mutations described in PBD patients with the aim to classify and rationalize them by mapping them onto a homology model of the human Pex1/Pex6 complex. Several mutations concern functionally conserved residues that are implied in ATP hydrolysis and substrate processing. Contrary to fold destabilizing mutations, patients suffering from function-impairing mutations may not benefit from stabilizing agents, which have been reported as potential therapeutics for PBD patients.show moreshow less

Download full text files

  • pmnr1072.pdfeng
    (3386KB)

    SHA-1: 5d51eef3c7c45281fc289c45c294a085e292f099

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Anne Schieferdecker, Petra WendlerORCiDGND
URN:urn:nbn:de:kobv:517-opus4-472843
DOI:https://doi.org/10.25932/publishup-47284
ISSN:1866-8372
Title of parent work (German):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (1072)
Publication type:Postprint
Language:English
Date of first publication:2021/01/07
Publication year:2019
Publishing institution:Universität Potsdam
Release date:2021/01/07
Tag:Pex1; Pex6; Zellweger; Zellweger syndrome spectrum disorder (ZSSD); mutation; structure
Issue:1072
Number of pages:27
Source:International Journal of Molecular Sciences 20 (2019) 15, Art. 3756 DOI: 10.3390/ijms20153756
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Peer review:Referiert
Grantor:Multidisciplinary Digital Publishing Institute (MDPI)
Publishing method:Open Access / Green Open-Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
External remark:Bibliographieeintrag der Originalveröffentlichung/Quelle
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.