The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 32 of 56871
Back to Result List

Design of a high-affinity carbohydrate binding protein

Design eines hoch-affin Kohlenhydrat-bindenden Proteins

  • Carbohydrate-protein interactions are ubiquitous in nature. They provide the initial molecular contacts in many cell-cell processes as for example immune responses, signal transduction, egg fertilization and infection processes of pathogenic viruses and bacteria. Furthermore, bacteria themselves are infected by bacteriophages, viruses which can cause the bacterial lysis, but do not affect other hosts. The infection process of a bacteriophage involves the specific detection and binding of the bacterium, which can be based on a carbohydrate-protein interaction. The mechanism of specific detection of pathogenic bacteria can thereby be useful for the development of bacteria sensors in the food industry or for tools in diagnostics. Bacteriophages of the Podoviridae family use tailspike proteins for the specific detection of enteritis causing bacteria as Escherichia coli, Salmonella spp. or Shigella flexneri. The tailspike protein provides the first contact by binding to the carbohydrate containing O-antigen part of lipopolysaccharide inCarbohydrate-protein interactions are ubiquitous in nature. They provide the initial molecular contacts in many cell-cell processes as for example immune responses, signal transduction, egg fertilization and infection processes of pathogenic viruses and bacteria. Furthermore, bacteria themselves are infected by bacteriophages, viruses which can cause the bacterial lysis, but do not affect other hosts. The infection process of a bacteriophage involves the specific detection and binding of the bacterium, which can be based on a carbohydrate-protein interaction. The mechanism of specific detection of pathogenic bacteria can thereby be useful for the development of bacteria sensors in the food industry or for tools in diagnostics. Bacteriophages of the Podoviridae family use tailspike proteins for the specific detection of enteritis causing bacteria as Escherichia coli, Salmonella spp. or Shigella flexneri. The tailspike protein provides the first contact by binding to the carbohydrate containing O-antigen part of lipopolysaccharide in the Gram-negative cell wall. After binding to O-antigen repeating units, the enzymatic activity of tailspike proteins leads to cleavage of the carbohydrate chains, which enables the bacteriophage to approach the bacterial surface for DNA injection. Tailspike proteins thereby exhibit a relatively low affinity to the oligosaccharide structures of O-antigen due to the necessary binding, cleavage and release cycle, compared for example to antibodies. In this work it was aimed to study the determinants that influence carbohydrate affinity in the extended TSP binding grooves. This is a prerequisite to design a high-affinity tailspike protein based bacteria sensor. For this purpose the tailspike protein of the bacteriophage Sf6 (Sf6 TSP) was used, which specifically binds Shigella flexneri Y O-antigen with two tetrasaccharide repeating units at the intersubunits of the trimeric β-helix protein. The Sf6 TSP endorhamnosidase cleaves the O-antigen, which leads to an octasaccharide as the main product. The binding affinity of inactive Sf6 TSP towards polysaccharide was characterized by fluorescence titration experiments and surface plasmon resonance (SPR). Moreover, cysteine mutations were introduced into the Sf6 TSP binding site for the covalent thiol-coupling of an environment-sensitive fluorescent label to obtain a sensor for Shigella flexneri Y based on TSP-O-antigen recognition. This sensor showed a more than 100 % amplitude increase of a visible light fluorescence upon the binding of a polysaccharide test solution. Improvements of the TSP sensor can be achieved by increasing the tailspike affinity towards the O-antigen. Therefore molecular dynamics simulations evaluating ligand flexibility, hydrogen bond occupancies and water network distributions were used for affinity prediction on the available cysteine mutants of Sf6 TSP. The binding affinities were experimentally analyzed by SPR. This combined computational and experimental set-up for the design of a high-affinity carbohydrate binding protein could successfully distinguish strongly increased and decreased affinities of single amino acid mutants. A thermodynamically and structurally well characterized set of another tailspike protein HK620 TSP with high-affinity mutants was used to evaluate the influence of water molecules on binding affinity. The free enthalpy of HK620 TSP oligosaccharide complex formation thereby either derived from the replacement of a conserved water molecule or by immobilization of two water molecules upon ligand binding. Furthermore, the enthalpic and entropic contributions of water molecules in a hydrophobic binding pocket could be assigned by free energy calculations. The findings in this work can be helpful for the improvement of carbohydrate docking and carbohydrate binding protein engineering algorithms in the future.show moreshow less
  • Kohlenhydrat-Protein Interaktionen sind in der Natur weitverbreitet. Sie stellen die Grundlage für viele biologische Prozesse dar, wie zum Beispiel Immunantworten, Wundheilung und Infektionsprozesse von pathogenen Viren oder Bakterien mit einem Wirt wie dem Menschen. Neben der Infektion von Menschen können aber auch Bakterien selbst durch so genannte Bakteriophagen infiziert werden, welche für den Menschen ungefährlich sind. Diese Infektion involviert die spezifische Erkennung der pathogenen Bakterien, die Vermehrung der Bakteriophagen und schließlich die Abtötung der Bakterien. Dabei können die Mechanismen der spezifischen Erkennung genutzt werden, pathogene Bakterien auf Lebensmitteln zu detektieren oder die Diagnose von Infektionen zu vereinfachen. Die spezifische Erkennung von Enteritis-erzeugenden Bakterien wie Escherichia coli, Salmonella spp. oder Shigella flexneri durch Bakteriophagen der Familie der Podoviridae erfolgt über die Bindung eines sogenannten tailspike proteins des Bakteriophagen an das ausKohlenhydrat-Protein Interaktionen sind in der Natur weitverbreitet. Sie stellen die Grundlage für viele biologische Prozesse dar, wie zum Beispiel Immunantworten, Wundheilung und Infektionsprozesse von pathogenen Viren oder Bakterien mit einem Wirt wie dem Menschen. Neben der Infektion von Menschen können aber auch Bakterien selbst durch so genannte Bakteriophagen infiziert werden, welche für den Menschen ungefährlich sind. Diese Infektion involviert die spezifische Erkennung der pathogenen Bakterien, die Vermehrung der Bakteriophagen und schließlich die Abtötung der Bakterien. Dabei können die Mechanismen der spezifischen Erkennung genutzt werden, pathogene Bakterien auf Lebensmitteln zu detektieren oder die Diagnose von Infektionen zu vereinfachen. Die spezifische Erkennung von Enteritis-erzeugenden Bakterien wie Escherichia coli, Salmonella spp. oder Shigella flexneri durch Bakteriophagen der Familie der Podoviridae erfolgt über die Bindung eines sogenannten tailspike proteins des Bakteriophagen an das aus Kohlenhydraten-bestehende O-Antigen des Lipopolysaccharids von Gram-negativen Bakterien. Das tailspike protein spaltet das O-Antigen um den Bakteriophage an die Oberfläche des Bakteriums zu führen, damit eine Infektion stattfinden kann. Die Affinität des tailspike proteins zum O-Antigen ist dabei sehr niedrig, um nach Spaltung des O-Antigens das Spaltungsprodukt zu lösen und wiederum neues Substrat zu binden. In dieser Arbeit wurde ein tailspike protein des Bakteriophagen Sf6 verwendet (Sf6 TSP), das spezifisch an das O-Antigen von Shigella flexneri Y bindet. Eine inaktive Variante des Sf6 TSP wurde verwendet um einen hoch-affin bindenden Sensor für pathogene Shigella zu entwickeln. Der Shigella-Sensor wurde durch Kopplung von unterschiedlichen Proteinmutanten mit einem fluoreszierendem Molekül erhalten. Dabei zeigte eine dieser Mutanten bei Bindung von Shigella O-Antigen ein Fluoreszenz-Signal im Bereich des sichtbaren Lichts. Molekulardynamische Simulationen wurde anhand der erzeugten Proteinmutanten als Methode zum rationalen Design von hoch-affin Kohlenhydrat-bindenden Proteinen getestet und die resultierenden Affinitätsvorhersagen wurden über Oberflächenplasmonresonanz-Experimente überprüft. Aus weiteren experimentellen und simulierten Daten konnten schließlich Schlussfolgerungen über die Ursprünge von Kohlenhydrat-Protein Interaktionen gezogen werden, die eine Einsicht über den Einfluss von Wasser in diesem Bindungsprozess lieferten.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Ruth Sonja KunstmannORCiDGND
URN:urn:nbn:de:kobv:517-opus4-403458
Supervisor(s):Robert Seckler
Publication type:Doctoral Thesis
Language:English
Publication year:2017
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2017/09/22
Release date:2017/11/15
Tag:Bakterien Sensor; Kohlenhydrat-Protein Interaction
bacterial sensor; carbohydrate-protein interaction
Number of pages:XI, 169
RVK - Regensburg classification:WD 5100, VG 6867
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.