• search hit 1 of 1
Back to Result List

Microphysical retrieval of non-spherical aerosol particles using regularized inversion of multi-wavelength lidar data

Retrieval der Mikrophysik von nichtkugelförmigen Aerosolpartikeln durch regularisierte Inversion von Mehrwellenlängen-Lidardaten

  • Numerous reports of relatively rapid climate changes over the past century make a clear case of the impact of aerosols and clouds, identified as sources of largest uncertainty in climate projections. Earth’s radiation balance is altered by aerosols depending on their size, morphology and chemical composition. Competing effects in the atmosphere can be further studied by investigating the evolution of aerosol microphysical properties, which are the focus of the present work. The aerosol size distribution, the refractive index, and the single scattering albedo are commonly used such properties linked to aerosol type, and radiative forcing. Highly advanced lidars (light detection and ranging) have reduced aerosol monitoring and optical profiling into a routine process. Lidar data have been widely used to retrieve the size distribution through the inversion of the so-called Lorenz-Mie model (LMM). This model offers a reasonable treatment for spherically approximated particles, it no longer provides, though, a viable description for otherNumerous reports of relatively rapid climate changes over the past century make a clear case of the impact of aerosols and clouds, identified as sources of largest uncertainty in climate projections. Earth’s radiation balance is altered by aerosols depending on their size, morphology and chemical composition. Competing effects in the atmosphere can be further studied by investigating the evolution of aerosol microphysical properties, which are the focus of the present work. The aerosol size distribution, the refractive index, and the single scattering albedo are commonly used such properties linked to aerosol type, and radiative forcing. Highly advanced lidars (light detection and ranging) have reduced aerosol monitoring and optical profiling into a routine process. Lidar data have been widely used to retrieve the size distribution through the inversion of the so-called Lorenz-Mie model (LMM). This model offers a reasonable treatment for spherically approximated particles, it no longer provides, though, a viable description for other naturally occurring arbitrarily shaped particles, such as dust particles. On the other hand, non-spherical geometries as simple as spheroids reproduce certain optical properties with enhanced accuracy. Motivated by this, we adapt the LMM to accommodate the spheroid-particle approximation introducing the notion of a two-dimensional (2D) shape-size distribution. Inverting only a few optical data points to retrieve the shape-size distribution is classified as a non-linear ill-posed problem. A brief mathematical analysis is presented which reveals the inherent tendency towards highly oscillatory solutions, explores the available options for a generalized solution through regularization methods and quantifies the ill-posedness. The latter will improve our understanding on the main cause fomenting instability in the produced solution spaces. The new approach facilitates the exploitation of additional lidar data points from depolarization measurements, associated with particle non-sphericity. However, the generalization of LMM vastly increases the complexity of the problem. The underlying theory for the calculation of the involved optical cross sections (T-matrix theory) is computationally so costly, that would limit a retrieval analysis to an unpractical point. Moreover the discretization of the model equation by a 2D collocation method, proposed in this work, involves double integrations which are further time consuming. We overcome these difficulties by using precalculated databases and a sophisticated retrieval software (SphInX: Spheroidal Inversion eXperiments) especially developed for our purposes, capable of performing multiple-dataset inversions and producing a wide range of microphysical retrieval outputs. Hybrid regularization in conjunction with minimization processes is used as a basis for our algorithms. Synthetic data retrievals are performed simulating various atmospheric scenarios in order to test the efficiency of different regularization methods. The gap in contemporary literature in providing full sets of uncertainties in a wide variety of numerical instances is of major concern here. For this, the most appropriate methods are identified through a thorough analysis on an overall-behavior basis regarding accuracy and stability. The general trend of the initial size distributions is captured in our numerical experiments and the reconstruction quality depends on data error level. Moreover, the need for more or less depolarization points is explored for the first time from the point of view of the microphysical retrieval. Finally, our approach is tested in various measurement cases giving further insight for future algorithm improvements.show moreshow less
  • Zahlreiche Berichte von relativ schnellen Klimaveränderungen im vergangenen Jahrhundert liefern überzeugende Argumente über die Auswirkungen von Aerosolen und Wolken auf Wetter und Klima. Aerosole und Wolken wurden als Quellen größter Unsicherheit in Klimaprognosen identifiziert. Die Strahlungsbilanz der Erde wird verändert durch die Partikelgröße, ihre Morphologie und ihre chemische Zusammensetzung. Konkurrierende Effekte in der Atmosphäre können durch die Bestimmung von mikrophysikalischen Partikeleigenschaften weiter untersucht werden, was der Fokus der vorliegenden Arbeit ist. Die Aerosolgrößenverteilung, der Brechungsindex der Partikeln und die Einzel-Streu-Albedo sind solche häufig verwendeten Parameter, die mit dem Aerosoltyp und dem Strahlungsantrieb verbunden sind. Hoch entwickelte Lidare (Light Detection and Ranging) haben die Aerosolüberwachung und die optische Profilierung zu einem Routineprozess gemacht. Lidar-Daten wurden verwendet um die Größenverteilung zu bestimmen, was durch die Inversion des sogenanntenZahlreiche Berichte von relativ schnellen Klimaveränderungen im vergangenen Jahrhundert liefern überzeugende Argumente über die Auswirkungen von Aerosolen und Wolken auf Wetter und Klima. Aerosole und Wolken wurden als Quellen größter Unsicherheit in Klimaprognosen identifiziert. Die Strahlungsbilanz der Erde wird verändert durch die Partikelgröße, ihre Morphologie und ihre chemische Zusammensetzung. Konkurrierende Effekte in der Atmosphäre können durch die Bestimmung von mikrophysikalischen Partikeleigenschaften weiter untersucht werden, was der Fokus der vorliegenden Arbeit ist. Die Aerosolgrößenverteilung, der Brechungsindex der Partikeln und die Einzel-Streu-Albedo sind solche häufig verwendeten Parameter, die mit dem Aerosoltyp und dem Strahlungsantrieb verbunden sind. Hoch entwickelte Lidare (Light Detection and Ranging) haben die Aerosolüberwachung und die optische Profilierung zu einem Routineprozess gemacht. Lidar-Daten wurden verwendet um die Größenverteilung zu bestimmen, was durch die Inversion des sogenannten Lorenz-Mie-Modells (LMM) gelingt. Dieses Modell bietet eine angemessene Behandlung für sphärisch angenäherte Partikeln, es stellt aber keine brauchbare Beschreibung für andere natürlich auftretende beliebig geformte Partikeln -wie z.B. Staubpartikeln- bereit. Andererseits stellt die Einbeziehung einer nicht kugelförmigen Geometrie –wie z.B. einfache Sphäroide- bestimmte optische Eigenschaften mit verbesserter Genauigkeit dar. Angesichts dieser Tatsache erweitern wir das LMM durch die Approximation von Sphäroid-Partikeln. Dazu ist es notwendig den Begriff einer zweidimensionalen Größenverteilung einzuführen. Die Inversion einer sehr geringen Anzahl optischer Datenpunkte zur Bestimmung der Form der Größenverteilung ist als ein nichtlineares schlecht gestelltes Problem bekannt. Eine kurze mathematische Analyse wird vorgestellt, die die inhärente Tendenz zu stark oszillierenden Lösungen zeigt. Weiterhin werden Optionen für eine verallgemeinerte Lösung durch Regularisierungsmethoden untersucht und der Grad der Schlechtgestelltheit quantifiziert. Letzteres wird unser Verständnis für die Hauptursache der Instabilität bei den berechneten Lösungsräumen verbessern. Der neue Ansatz ermöglicht es uns, zusätzliche Lidar-Datenpunkte aus Depolarisationsmessungen zu nutzen, die sich aus der Nicht-sphärizität der Partikeln assoziieren. Die Verallgemeinerung des LMMs erhöht erheblich die Komplexität des Problems. Die zugrundeliegende Theorie für die Berechnung der beteiligten optischen Querschnitte (T-Matrix-Ansatz) ist rechnerisch so aufwendig, dass eine Neuberechnung dieser nicht sinnvoll erscheint. Darüber hinaus wird ein zweidimensionales Kollokationsverfahren für die Diskretisierung der Modellgleichung vorgeschlagen. Dieses Verfahren beinhaltet Doppelintegrationen, die wiederum zeitaufwendig sind. Wir überwinden diese Schwierigkeiten durch Verwendung vorgerechneter Datenbanken sowie einer hochentwickelten Retrieval-Software (SphInX: Spheroidal Inversion eXperiments). Diese Software wurde speziell für unseren Zweck entwickelt und ist in der Lage mehrere Datensatzinversionen gleichzeitig durchzuführen und eine große Auswahl von mikrophysikalischen Retrieval-Ausgaben bereitzustellen. Eine hybride Regularisierung in Verbindung mit einem Minimierungsverfahren wird als Grundlage für unsere Algorithmen verwendet. Synthetische Daten-Inversionen werden mit verschiedenen atmosphärischen Szenarien durchgeführt, um die Effizienz verschiedener Regularisierungsmethoden zu untersuchen. Die Lücke in der gegenwärtigen wissenschaftlichen Literatur gewisse Unsicherheiten durch breitgefächerte numerische Fälle bereitzustellen, ist ein Hauptanliegen dieser Arbeit. Motiviert davon werden die am besten geeigneten Verfahren einer gründlichen Analyse in Bezug auf ihr Gesamtverhalten, d.h. Genauigkeit und Stabilität, unterzogen. Der allgemeine Trend der Anfangsgrößenverteilung wird in unseren numerischen Experimenten erfasst. Zusätzlich hängt die Rekonstruktionsqualität vom Datenfehler ab. Darüber hinaus wird die Anzahl der notwendigen Depolarisationspunkte zum ersten Mal aus der Sicht des mikrophysikalischen Parameter-Retrievals erforscht. Abschließend verwenden wir unsere Software für verschiedene Messfälle, was weitere Einblicke für künftige Verbesserungen des Algorithmus gibt.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Stefanos SamarasORCiDGND
URN:urn:nbn:de:kobv:517-opus4-396528
Supervisor(s):Christine Böckmann
Publication type:Doctoral Thesis
Language:English
Publication year:2016
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2017/08/05
Release date:2017/06/12
Tag:Aerosole; Inversion; Lidar; Mikrophysik; Regularisierung; Retrieval; schlecht gestellt
aerosols; ill-posed; inversion; lidar; microphysics; regularization; retrieval
Number of pages:xiv, 190
RVK - Regensburg classification:SK 950, UT 8130
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Mathematik
DDC classification:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.