The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 5
Back to Result List

Supramolecular hydrogen-bonding networks constructed from copper(II) chlorobenzoates with nicotinamide - Structure and EPR

  • Nicotinamide (nia) has been employed as a supramolecular reagent in the synthesis of four copper(II) chloro- and dichlorobenzoate (Clbz/Cl(2)bz) complexes. The structures of the compounds [Cu(2-Clbz)(2) (nia)(2)(H2O)(2)] (1), icu(4-clbz)(2)(nia)(2)(H2O)(2)] (2), [Cu(3,5-Cl(2)bz)(2)(nia)(2)(H2O)(2)] (3), and [Cu(2,5-Cl(2)bz)(2) (nia)(2)(H2O)]center dot H2O (4) were determined. All the investigated compounds 1-4 reveal water molecules as coordinated. Their structures show distorted octahedral chromophores (CuN2O2O)-N-II'(2), though some are better described as square-planar or square-pyramid due to a large deviation of the axial ligand away from the octahedral z-axis along with different Cu center dot center dot center dot O (axial) lengths. The equatorial positions are occupied in all four cases by two nitrogen (nia-py) atoms and two carboxylate oxygen atoms of two Clbz/Cl(2)bz ligands, while the axial positions are occupied by water molecules. The EPR spectra reveal for all 1-4 compounds a spin state of S = 1/2, mostly with axialNicotinamide (nia) has been employed as a supramolecular reagent in the synthesis of four copper(II) chloro- and dichlorobenzoate (Clbz/Cl(2)bz) complexes. The structures of the compounds [Cu(2-Clbz)(2) (nia)(2)(H2O)(2)] (1), icu(4-clbz)(2)(nia)(2)(H2O)(2)] (2), [Cu(3,5-Cl(2)bz)(2)(nia)(2)(H2O)(2)] (3), and [Cu(2,5-Cl(2)bz)(2) (nia)(2)(H2O)]center dot H2O (4) were determined. All the investigated compounds 1-4 reveal water molecules as coordinated. Their structures show distorted octahedral chromophores (CuN2O2O)-N-II'(2), though some are better described as square-planar or square-pyramid due to a large deviation of the axial ligand away from the octahedral z-axis along with different Cu center dot center dot center dot O (axial) lengths. The equatorial positions are occupied in all four cases by two nitrogen (nia-py) atoms and two carboxylate oxygen atoms of two Clbz/Cl(2)bz ligands, while the axial positions are occupied by water molecules. The EPR spectra reveal for all 1-4 compounds a spin state of S = 1/2, mostly with axial symmetry of the spectra. Their resolution is clearly dependant to the crystal symmetry related equivalence of the magnetic sites. The coordination molecules of all compounds are connected by N-H center dot center dot center dot O and O-H center dot center dot center dot O H-bonds from nicotinamide NH2 groups, carboxylate anions and/or water molecules, which create supramolecular chains or further H-bonded into 2D sheets. Steric hindering of the chlorine atoms of the Clbz/Cl(2)bz, especially seen at the coordination of the water molecules, demonstrates its role at the coordination sphere appearance. Despite this influence, the water molecules in 1-4 always assist at the similar supramolecular H-bonded network, almost at the same manner.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Jozef Halaska, Andrej Pevec, Peter StrauchGND, Bojan Kozlevcar, Marian Koman, Jan Moncol
DOI:https://doi.org/10.1016/j.poly.2013.05.032
ISSN:0277-5387
Title of parent work (English):Polyhedron : the international journal of inorganic and organometallic chemistry
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:Copper(II) complexes; Crystal structure; EPR; Nicotinamide
Volume:61
Number of pages:7
First page:20
Last Page:26
Funding institution:Slovak Research and Development Agency [APVV-0014-11]; Grant Agency of the Ministry of Education [VEGA 1/0052/11, 1/0056/13]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.