The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 6
Back to Result List

Selective excitation of molecule-surface vibrations in H2 and D2 dissociatively adsorbed on Ru(0001)

  • In this contribution we report about the selective vibrational excitation of H2 and D2 on Ru(0001) as an example for nonadiabatic coupling of an open quantum system to a dissipative environment. We investigate the possibility of achieving state-selective vibrational excitations of H2 and D2 adsorbed on a Ru(0001) surface using picosecond infrared laser pulses. The systems behavior is explored using pulses that are rationally designed and others that are optimized using a time-local variant of Optimal Control Theory. The effects of dissipation on the laser-driven dynamics are studied using the reduced-density matrix formalism. The non-adiabatic couplings between adsorbate and surface are computed perturbatively, for which our recently introduced state-resolved anharmonic rate model is used. It is shown that mode- and state-selective excitation can be achieved in the absence of dissipation when using optimized laser pulses. The inclusion of dissipation in the model reduces the state selectivity and the population transfer yield toIn this contribution we report about the selective vibrational excitation of H2 and D2 on Ru(0001) as an example for nonadiabatic coupling of an open quantum system to a dissipative environment. We investigate the possibility of achieving state-selective vibrational excitations of H2 and D2 adsorbed on a Ru(0001) surface using picosecond infrared laser pulses. The systems behavior is explored using pulses that are rationally designed and others that are optimized using a time-local variant of Optimal Control Theory. The effects of dissipation on the laser-driven dynamics are studied using the reduced-density matrix formalism. The non-adiabatic couplings between adsorbate and surface are computed perturbatively, for which our recently introduced state-resolved anharmonic rate model is used. It is shown that mode- and state-selective excitation can be achieved in the absence of dissipation when using optimized laser pulses. The inclusion of dissipation in the model reduces the state selectivity and the population transfer yield to highly excited states. In this case, mode activation is most effectively realized by a rational pulse of carefully chosen duration rather than by a locally optimized pulse.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Gernot FüchselORCiD, Jean Christophe TremblayORCiDGND, Tillmann KlamrothORCiDGND, Peter SaalfrankORCiDGND
DOI:https://doi.org/10.1002/ijch.201100097
ISSN:0021-2148
Title of parent work (English):Israel journal of chemistry
Publisher:Wiley-VCH
Place of publishing:Weinheim
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:dissipative dynamics; photochemistry; quantum control; surface chemistry
Volume:52
Issue:5
Number of pages:14
First page:438
Last Page:451
Funding institution:Deutsche Forschungsgemeinschaft [Sa547/8-1]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.