• search hit 2 of 118
Back to Result List

Trait variation in changing environments: Assessing the role of DNA methylation in non-native plant species

Merkmalsvariation in sich verändernden Umgebungen: Bewertung der Rolle der DNA-Methylierung bei nicht einheimischen Pflanzenarten

  • The increasing introduction of non-native plant species may pose a threat to local biodiversity. However, the basis of successful plant invasion is not conclusively understood, especially since these plant species can adapt to the new range within a short period of time despite impoverished genetic diversity of the starting populations. In this context, DNA methylation is considered promising to explain successful adaptation mechanisms in the new habitat. DNA methylation is a heritable variation in gene expression without changing the underlying genetic information. Thus, DNA methylation is considered a so-called epigenetic mechanism, but has been studied in mainly clonally reproducing plant species or genetic model plants. An understanding of this epigenetic mechanism in the context of non-native, predominantly sexually reproducing plant species might help to expand knowledge in biodiversity research on the interaction between plants and their habitats and, based on this, may enable more precise measures in conservation biology. ForThe increasing introduction of non-native plant species may pose a threat to local biodiversity. However, the basis of successful plant invasion is not conclusively understood, especially since these plant species can adapt to the new range within a short period of time despite impoverished genetic diversity of the starting populations. In this context, DNA methylation is considered promising to explain successful adaptation mechanisms in the new habitat. DNA methylation is a heritable variation in gene expression without changing the underlying genetic information. Thus, DNA methylation is considered a so-called epigenetic mechanism, but has been studied in mainly clonally reproducing plant species or genetic model plants. An understanding of this epigenetic mechanism in the context of non-native, predominantly sexually reproducing plant species might help to expand knowledge in biodiversity research on the interaction between plants and their habitats and, based on this, may enable more precise measures in conservation biology. For my studies, I combined chemical DNA demethylation of field-collected seed material from predominantly sexually reproducing species and rearing offsping under common climatic conditions to examine DNA methylation in an ecological-evolutionary context. The contrast of chemically treated (demethylated) plants, whose variation in DNA methylation was artificially reduced, and untreated control plants of the same species allowed me to study the impact of this mechanism on adaptive trait differentiation and local adaptation. With this experimental background, I conducted three studies examining the effect of DNA methylation in non-native species along a climatic gradient and also between climatically divergent regions. The first study focused on adaptive trait differentiation in two invasive perennial goldenrod species, Solidago canadensis sensu latu and S. gigantea AITON, along a climate gradient of more than 1000 km in length in Central Europe. I found population differences in flowering timing, plant height, and biomass in the temporally longer-established S. canadensis, but only in the number of regrowing shoots for S. gigantea. While S. canadensis did not show any population structure, I was able to identify three genetic groups along this climatic gradient in S. gigantea. Surprisingly, demethylated plants of both species showed no change in the majority of traits studied. In the subsequent second study, I focused on the longer-established goldenrod species S. canadensis and used molecular analyses to infer spatial epigenetic and genetic population differences in the same specimens from the previous study. I found weak genetic but no epigenetic spatial variation between populations. Additionally, I was able to identify one genetic marker and one epigenetic marker putatively susceptible to selection. However, the results of this study reconfirmed that the epigenetic mechanism of DNA methylation appears to be hardly involved in adaptive processes within the new range in S. canadensis. Finally, I conducted a third study in which I reciprocally transplanted short-lived plant species between two climatically divergent regions in Germany to investigate local adaptation at the plant family level. For this purpose, I used four plant families (Amaranthaceae, Asteraceae, Plantaginaceae, Solanaceae) and here I additionally compared between non-native and native plant species. Seeds were transplanted to regions with a distance of more than 600 kilometers and had either a temperate-oceanic or a temperate-continental climate. In this study, some species were found to be maladapted to their own local conditions, both in non-native and native plant species alike. In demethylated individuals of the plant species studied, DNA methylation had inconsistent but species-specific effects on survival and biomass production. The results of this study highlight that DNA methylation did not make a substantial contribution to local adaptation in the non-native as well as native species studied. In summary, my work showed that DNA methylation plays a negligible role in both adaptive trait variation along climatic gradients and local adaptation in non-native plant species that either exhibit a high degree of genetic variation or rely mainly on sexual reproduction with low clonal propagation. I was able to show that the adaptive success of these non-native plant species can hardly be explained by DNA methylation, but could be a possible consequence of multiple introductions, dispersal corridors and meta-population dynamics. Similarly, my results illustrate that the use of plant species that do not predominantly reproduce clonally and are not model plants is essential to characterize the effect size of epigenetic mechanisms in an ecological-evolutionary context.show moreshow less
  • Die zunehmende Eintragung nicht-heimischer Pflanzenarten kann eine Gefahr für die lokale Artenvielfalt darstellen. Die Grundlagen einer erfolgreichen pflanzlichen Ausbreitung sind jedoch nicht abschließend geklärt, zumal sich diese Arten innerhalb kurzer Zeit an das neue Verbreitungsgebiet anpassen können trotz anfänglich reduzierter genetischer Vielfalt der Startpopulationen. In diesem Kontext gilt DNA-Methylierung als vielversprechend, um erfolgreiche Anpassungsmechanismen im neuen Lebensraum zu erklären. Bei der DNA-Methylierung handelt es sich um eine vererbbare Variation der Genaktivität, ohne dass die zugrundeliegende genetische Erbinformation verändert wird. Damit gehört DNA-Methylierung zu den sogenannten epigenetischen Mechanismen, wurde jedoch vorwiegend bei sich klonal vermehrenden Pflanzenarten oder genetischen Modellpflanzen untersucht. Ein Verständnis dieses epigenetischen Mechanismus im Zusammenhang mit nicht-einheimischen, sich vorwiegend sexuell reproduzierenden Pflanzenarten erweitert das Wissen in derDie zunehmende Eintragung nicht-heimischer Pflanzenarten kann eine Gefahr für die lokale Artenvielfalt darstellen. Die Grundlagen einer erfolgreichen pflanzlichen Ausbreitung sind jedoch nicht abschließend geklärt, zumal sich diese Arten innerhalb kurzer Zeit an das neue Verbreitungsgebiet anpassen können trotz anfänglich reduzierter genetischer Vielfalt der Startpopulationen. In diesem Kontext gilt DNA-Methylierung als vielversprechend, um erfolgreiche Anpassungsmechanismen im neuen Lebensraum zu erklären. Bei der DNA-Methylierung handelt es sich um eine vererbbare Variation der Genaktivität, ohne dass die zugrundeliegende genetische Erbinformation verändert wird. Damit gehört DNA-Methylierung zu den sogenannten epigenetischen Mechanismen, wurde jedoch vorwiegend bei sich klonal vermehrenden Pflanzenarten oder genetischen Modellpflanzen untersucht. Ein Verständnis dieses epigenetischen Mechanismus im Zusammenhang mit nicht-einheimischen, sich vorwiegend sexuell reproduzierenden Pflanzenarten erweitert das Wissen in der Biodiversitätsforschung zur Interaktion zwischen Pflanzen und ihrem Lebensraum und kann, darauf aufbauend, präzisere Maßnahmen in der Naturschutzbiologie ermöglichen. Für meine Studien kombinierte ich die chemische DNA-Demethylierung von im Freiland gesammeltem Samenmaterial sich vorwiegend sexuell fortpflanzender Arten und die Aufzucht unter gemeinsamen klimatischen Bedingungen, um DNA-Methylierung im ökologisch-evolutionären Kontext zu untersuchen. Der Kontrast von chemisch behandelten (demethylierten) Pflanzen, deren Methylierungsvariation nun künstlich verringert war, und unbehandelten Kontrollpflanzen derselben Art ermöglichte mir die Auswirkung dieses Mechanismus auf adaptive Merkmalsvariationen und lokale Anpassung zu studieren. Vor diesem experimentellen Hintergrund führte ich drei Studien durch, um die Auswirkung von DNA-Methylierung bei nicht-einheimischen Pflanzenarten entlang eines klimatischen Gradienten und zwischen zwei klimatisch unterschiedlichen Regionen zu untersuchen. Die erste Studie konzentrierte sich auf adaptive Merkmalsveränderungen bei Nachkommen von zwei invasiven, mehrjährigen Goldrutenarten, Solidago canadensis sensu latu und S. gigantea AITON, entlang eines Klimagradienten von mehr als 1000 km Länge in Zentraleuropa. Ich fand graduelle Unterschiede im Blühzeitpunkt, in der Pflanzenhöhe und der Biomasse bei der zeitlich länger etablierten S. canadensis, bei S. gigantea jedoch nur in der Anzahl der nachwachsenden Triebe. Während S. canadensis keinerlei Populationsstruktur aufwies, konnte ich bei S. gigantea drei genetische Gruppen entlang dieses Klimagradienten identifizieren. Überraschenderweise zeigten demethylierte Pflanzen beider Arten keine Veränderung in der überwiegenden Anzahl der untersuchten Merkmale. In der darauffolgenden zweiten Studie konzentrierte ich mich auf die länger etablierte Goldrutenart S. canadensis und verwendete molekulare Analysen, um räumliche epigenetische und genetische Populationunterschiede aus den Exemplaren der vorhergehenden Studie abzuleiten. Ich fand schwache genetische aber keine epigenetische räumliche Variation zwischen den Populationen. Zusätzlich konnte ich einen genetischen und einen epigenetischen Marker identifizieren, welcher potentiell unter Selektion stehen könnte. Allerdings bestätigten die Ergebnisse dieser Studie erneut, dass DNA-Methylierung bei S. canadensis kaum in die Anpassung an das neue Verbreitungsgebiet involviert zu sein scheint. Schließlich führte ich eine dritte Studie durch, in welcher ich Samen kurzlebiger Pflanzenarten reziprok zwischen zwei klimatisch unterschiedlichen Regionen in Deutschland transplantierte, um lokale Anpassung auf Ebene der Pflanzenfamilien zu untersuchen. Zu diesem Zweck nutze ich vier Pflanzenfamilien (Amaranthaceae, Asteraceae, Plantaginaceae, Solanaceae), wobei ich hier auch zwischen nicht-heimischen und heimischen Pflanzenarten verglich. Beide Regionen lagen mehr als 600 Kilometer voneinander entfernt und wiesen entweder ein gemäßigt-ozeanisches oder gemäßigt-kontinentales Klima auf. In dieser Studie zeigte sich für einige—sowohl nicht-einheimische als auch einhimische—Arten eine Fehlanpassung an die eigenen lokalen Bedingungen. In demethylierten Individuen der untersuchten Pflanzenarten wirkte sich die DNA-Methylierung widersprüchlich, aber artspezifisch auf das Überleben und die Biomasseproduktion aus. Die Ergebnisse dieser Studie unterstreichen, dass DNA-Methylierung einen vernachlässigbaren Beitrag zur lokalen Anpassung bei den untersuchten nicht-heimischen, aber auch einheimischen Arten leistete. Zusammenfassend konnte ich mit dieser Arbeit festellen, dass DNA-Methylierung bei nicht-einheimischen Pflanzenarten eine untergeordnete Rolle sowohl bei der adaptiven Merkmalsvariation entlang von Klimagradienten als auch der lokalen Anpassung an klimatisch unterschiedliche Regionen spielt, wenn diese Pflanzenarten eine hohe genetische Vielfalt aufweisen und sich hauptsächlich sexuell vermehren. Ich konnte zeigen, dass der Anpassungserfolg dieser nicht-einheimischen Pflanzenarten kaum durch DNA-Methylierung erklärbar ist, sondern vielmehr eine mögliche Folge mehrfacher Eintragungen, von Ausbreitungskorridoren und Meta-Populationsdynamiken sein könnte. Die Ergebnisse dieser Studien verdeutlichen ebenso, dass die Verwendung von Pflanzenarten, die sich nicht überwiegend klonal vermehren und keine genetischen Modellpflanzen sind, unerlässlich ist, um die Effektstärke epigenetischer Mechanismen im ökologisch-evolutionären Kontext zu charakterisieren.show moreshow less

Download full text files

  • SHA-512:f3daf2b727b84ba93a83be5d3cacfd6c0975c92cb336187838d9483d8f6cacc83be334fa056685bcc3aa35dbaae32a9d957f53389d8d3d088daf1b5a5a196864

Export metadata

Metadaten
Author details:Silvia EckertORCiD
URN:urn:nbn:de:kobv:517-opus4-568844
DOI:https://doi.org/10.25932/publishup-56884
Reviewer(s):Jasmin Radha JoshiORCiDGND, Walter DurkaORCiDGND, Susanne LachmuthORCiDGND
Supervisor(s):Jasmin Radha Joshi, Mark van Kleunen, Ewald Weber
Publication type:Doctoral Thesis
Language:English
Year of first publication:2022
Publication year:2022
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2022/10/20
Release date:2022/12/08
Tag:AFLP; Breitengrad; Cytosin-Methylierung; Deutschland; Epigenetik; Gemeinschaftsgarten-Experiment; Genom-Scan; MSAP; Mikrosatelliten; Mitteleuropa; Populationsstruktur; Zebularin; adaptive Differenzierung; invasiv; lokale Anpassung; nicht-einheimisch; reziprokes Transplantationsexperiment; ruderal; räumliche Autokorrelation; Ökokline
AFLP; Central Europe; Germany; MSAP; adaptive differentiation; common-garden experiment; cytosine methylation; epigenetics; genome scan; invasive; latitudinal clines; local adaptation; microsatellites; non-native; population structure; reciprocal transplant experiment; ruderal; spatial autocorrelation; zebularine
Amaranthus retroflexus; Chenopodium album; Datura stramonium; Erigeron annuus; Erigeron canadensis; Lactuca serriola; Plantago major; Senecio vulgaris; Solanum nigrum; Solidago canadensis; Solidago gigantea; Sonchus oleraceus; Tripleurospermum inodorum; Veronica persica
Number of pages:VIII, 134, CXXX
RVK - Regensburg classification:WG 1900, WG 9300, WN 1950
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
License (German):License LogoCC-BY-NC - Namensnennung, nicht kommerziell 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.