The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 56923
Back to Result List

ROS Generation in Human Aldehyde Oxidase And the Effects of ROS and Reactive Sulfhydryl on the Activity of the Enzyme

ROS-Erzeugung in Humane Aldehydoxidase und die Auswirkungen von ROS und reaktivem Sulfhydryl auf die Aktivität des Enzyms

  • Aldehyde oxidases (AOXs) (E.C. 1.2.3.1) are molybdoflavo-enzymes belonging to the xanthine oxidase (XO) family. AOXs in mammals contain one molybdenum cofactor (Moco), one flavin adenine dinucleotide (FAD) and two [2Fe-2S] clusters, the presence of which is essential for the activity of the enzyme. Human aldehyde oxidase (hAOX1) is a cytosolic enzyme mainly expressed in the liver. hAOX1is involved in the metabolism of xenobiotics. It oxidizes aldehydes to their corresponding carboxylic acids and hydroxylates N-heterocyclic compounds. Since these functional groups are widely present in therapeutics, understanding the behaviour of hAOX1 has important implications in medicine. During the catalytic cycle of hAOX1, the substrate is oxidized at Moco and electrons are internally transferred to FAD via the FeS clusters. An electron acceptor juxtaposed to the FAD receives the electrons and re-oxidizes the enzyme for the next catalytic cycle. Molecular oxygen is the endogenous electron acceptor of hAOX1 and in doing so it is reduced andAldehyde oxidases (AOXs) (E.C. 1.2.3.1) are molybdoflavo-enzymes belonging to the xanthine oxidase (XO) family. AOXs in mammals contain one molybdenum cofactor (Moco), one flavin adenine dinucleotide (FAD) and two [2Fe-2S] clusters, the presence of which is essential for the activity of the enzyme. Human aldehyde oxidase (hAOX1) is a cytosolic enzyme mainly expressed in the liver. hAOX1is involved in the metabolism of xenobiotics. It oxidizes aldehydes to their corresponding carboxylic acids and hydroxylates N-heterocyclic compounds. Since these functional groups are widely present in therapeutics, understanding the behaviour of hAOX1 has important implications in medicine. During the catalytic cycle of hAOX1, the substrate is oxidized at Moco and electrons are internally transferred to FAD via the FeS clusters. An electron acceptor juxtaposed to the FAD receives the electrons and re-oxidizes the enzyme for the next catalytic cycle. Molecular oxygen is the endogenous electron acceptor of hAOX1 and in doing so it is reduced and produces reactive oxygen species (ROS) including hydrogen peroxide (H2O2) and superoxide (O2.-). The production of ROS has patho-physiological importance, as ROS can have a wide range of effects on cell components including the enzyme itself. In this thesis, we have shown that hAOX1 loses its activity over multiple cycles of catalysis due to endogenous ROS production and have identified a cysteine rich motif that protects hAOX1 from the ROS damaging effects. We have also shown that a sulfido ligand, which is bound at Moco and is essential for the catalytic activity of the enzyme, is vulnerable during turnover. The ROS produced during the course of the reaction are also able to remove this sulfido ligand from Moco. ROS, in addition, oxidize particular cysteine residues. The combined effects of ROS on the sulfido ligand and on specific cysteine residues in the enzyme result in its inactivation. Furthermore, we report that small reducing agents containing reactive sulfhydryl groups, in a selective manner, inactivate some of the mammalian AOXs by modifying the sulfido ligand at Moco. The mechanism of ROS production by hAOX1 is another scope that has been investigated as part of the work in this thesis. We have shown that the ratio of type of ROS, i.e. hydrogen peroxide (H2O2) and superoxide (O2.-), produced by hAOX1 is determined by a particular position on a flexible loop that locates in close proximity of FAD. The size of the cavity at the ROS producing site, i.e. the N5 position of the FAD isoalloxazine ring, kinetically affects the amount of each type of ROS generated by hAOX1. Taken together, hAOX1 is an enzyme with emerging importance in pharmacological and medical studies, not only due to its involvement in drug metabolism, but also due to ROS production which has physiological and pathological implications.show moreshow less
  • Aldehyd-Oxidasen (AOXs) (E.C. 1.2.3.1) sind Molybdo-Flavo-Enzyme aus der Familie der Xanthin-Oxidasen (XO). AOXs in Säugetieren enthalten einen Molybdän-Cofaktor (Moco), ein Flavin-Adenosin-Dinukleotid (FAD) und zwei [2Fe-2S]-Cluster, deren Anwesenheit für die Aktivität des Enzyms essentiell ist. Die Humane Aldehyd-Oxidase (hAOX1) ist ein zytosolisches Enzym, das hauptsächlich in der Leber exprimiert wird und am Stoffwechsel von Xenobiotika beteiligt ist. hAOX1 oxidiert Aldehyde zu ihren entsprechenden Carbonsäuren und hydroxyliert N-heterocyclische Verbindungen. Da diese funktionellen Gruppen in Therapeutika weit verbreitet sind, hat das Verständnis des Verhaltens von hAOX1 wichtige Auswirkungen auf medizinische Studien. Während des Katalysezyklus von hAOX1 wird das Substrat an Moco oxidiert und die Elektronen werden über die FeS-Cluster intern auf FAD übertragen. Ein Elektronenakzeptor am FAD nimmt die Elektronen auf und re-oxidiert das Enzym für den nächsten Katalysezyklus. Molekularer Sauerstoff ist der endogene ElektronenakzeptorAldehyd-Oxidasen (AOXs) (E.C. 1.2.3.1) sind Molybdo-Flavo-Enzyme aus der Familie der Xanthin-Oxidasen (XO). AOXs in Säugetieren enthalten einen Molybdän-Cofaktor (Moco), ein Flavin-Adenosin-Dinukleotid (FAD) und zwei [2Fe-2S]-Cluster, deren Anwesenheit für die Aktivität des Enzyms essentiell ist. Die Humane Aldehyd-Oxidase (hAOX1) ist ein zytosolisches Enzym, das hauptsächlich in der Leber exprimiert wird und am Stoffwechsel von Xenobiotika beteiligt ist. hAOX1 oxidiert Aldehyde zu ihren entsprechenden Carbonsäuren und hydroxyliert N-heterocyclische Verbindungen. Da diese funktionellen Gruppen in Therapeutika weit verbreitet sind, hat das Verständnis des Verhaltens von hAOX1 wichtige Auswirkungen auf medizinische Studien. Während des Katalysezyklus von hAOX1 wird das Substrat an Moco oxidiert und die Elektronen werden über die FeS-Cluster intern auf FAD übertragen. Ein Elektronenakzeptor am FAD nimmt die Elektronen auf und re-oxidiert das Enzym für den nächsten Katalysezyklus. Molekularer Sauerstoff ist der endogene Elektronenakzeptor von hAOX1, der reduziert wird und reaktive Sauerstoffspezies (ROS) einschließlich Wasserstoffperoxid (H2O2) und Superoxid (O2.-) produziert. Die Produktion von ROS hat pathophysiologische Bedeutung mit weitreichenden Auswirkungen auf die Zellbestandteile und das Enzym selbst. In der vorliegenden Arbeit haben wir gezeigt, dass hAOX1 aufgrund der endogenen ROS-Produktion seine Aktivität über mehrere Katalysezyklen verliert und haben ein Cystein-reiches Motiv identifiziert, das hAOX1 vor den ROS-schädigenden Wirkungen schützt. Wir haben auch gezeigt, dass ein an Moco gebundener und für die katalytische Aktivität des Enzyms essentieller Sulfidoligand unter reduzierenden Bedingungen anfällig ist. Die im Verlauf der Reaktion entstehenden ROS sind in der Lage, diesen Sulfidoliganden aus dem Moco zu entfernen. ROS oxidieren auch bestimmte Cysteinreste. Die kombinierten Effekte von ROS auf den Sulfidoliganden und Cysteine führen zu einer Inaktivierung des Enzyms. Darüber hinaus berichten wir, dass Reduktionsmittel, die eine reaktive Sulfhydrylgruppe enthalten, selektiv einige der Säuger-AOX inaktivieren, indem sie den Sulfidoliganden beim Moco modifizieren. Der Mechanismus der ROS-Produktion durch hAOX1 ist ein weiterer Bereich, der im Rahmen dieser Arbeit untersucht wurde. Wir haben gezeigt, dass die Art von ROS, d. h. Wasserstoffperoxid (H2O2) und Superoxid (O2.-), die von hAOX1 produziert wird, durch eine bestimmte Position auf einem flexiblen Loop bestimmt wird, die sich in der Nähe von FAD befindet. Es scheint, dass die Größe der Kavität an der ROS-produzierenden Stelle, d. h. die N5-Position des FAD-Isoalloxazin-Rings, die Menge jedes ROS-Typs, der von hAOX1 erzeugt wird, kinetisch beeinflusst. Zusammenfassend ist hAOX1 ein Enzym mit zunehmender Bedeutung in pharmakologischen und medizinischen Studien, nicht nur aufgrund seiner Beteiligung am Arzneimittelstoffwechsel, sondern auch aufgrund der ROS-Produktion, die physiologische und pathologische Auswirkungen hat.show moreshow less

Download full text files

  • SHA-512:079a39fb06d560836de989eaca1b3bf8983ea89960d6acf94eba07a257b6bfca098d1e204c01b75a3fa79077b4df006e705d1bbc2b52ca9e2af9206da68e239a

Export metadata

Metadaten
Author details:Mariam Esmaeeli Moghaddam TabalvandaniORCiD
URN:urn:nbn:de:kobv:517-opus4-534600
DOI:https://doi.org/10.25932/publishup-53460
Reviewer(s):Silke LeimkühlerORCiDGND, Ralf MendelORCiDGND, Enrico GarattiniORCiD
Supervisor(s):Silke Leimkühler
Publication type:Doctoral Thesis
Language:English
Publication year:2022
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2022/01/07
Release date:2022/01/25
Tag:Aldehydoxidase; reaktive Sauerstoffspezies (ROS)
human aldehyde oxidase; reactive oxygen species (ROS)
Number of pages:153
RVK - Regensburg classification:WD 5055
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
DDC classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
MSC classification:92-XX BIOLOGY AND OTHER NATURAL SCIENCES
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.