The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 8
Back to Result List

About the role of physico-chemical properties and hydrodynamics on the progress of a precipitation reaction

Über die Rolle physikalisch-chemischer Eigenschaften und Hydrodynamiken auf den Fortschritt einer Fällungsreaktion

  • The size and morphology control of precipitated solid particles is a major economic issue for numerous industries. For instance, it is interesting for the nuclear industry, concerning the recovery of radioactive species from used nuclear fuel. The precipitates features, which are a key parameter from the post-precipitate processing, depend on the process local mixing conditions. So far, the relationship between precipitation features and hydrodynamic conditions have not been investigated. In this study, a new experimental configuration consisting of coalescing drops is set to investigate the link between reactive crystallization and hydrodynamics. Two configurations of aqueous drops are examined. The first one corresponds to high contact angle drops (>90°) in oil, as a model system for flowing drops, the second one correspond to sessile drops in air with low contact angle (<25°). In both cases, one reactive is dissolved in each drop, namely oxalic acid and cerium nitrate. When both drops get into contact, they may coalesce; theThe size and morphology control of precipitated solid particles is a major economic issue for numerous industries. For instance, it is interesting for the nuclear industry, concerning the recovery of radioactive species from used nuclear fuel. The precipitates features, which are a key parameter from the post-precipitate processing, depend on the process local mixing conditions. So far, the relationship between precipitation features and hydrodynamic conditions have not been investigated. In this study, a new experimental configuration consisting of coalescing drops is set to investigate the link between reactive crystallization and hydrodynamics. Two configurations of aqueous drops are examined. The first one corresponds to high contact angle drops (>90°) in oil, as a model system for flowing drops, the second one correspond to sessile drops in air with low contact angle (<25°). In both cases, one reactive is dissolved in each drop, namely oxalic acid and cerium nitrate. When both drops get into contact, they may coalesce; the dissolved species mix and react to produce insoluble cerium oxalate. The precipitates features and effect on hydrodynamics are investigated depending on the solvent. In the case of sessile drops in air, the surface tension difference between the drops generates a gradient which induces a Marangoni flow from the low surface tension drop over the high surface tension drop. By setting the surface tension difference between the two drops and thus the Marangoni flow, the hydrodynamics conditions during the drop coalescence could be modified. Diols/water mixtures are used as solvent, in order to fix the surface tension difference between the liquids of both drops regardless from the reactant concentration. More precisely, the used diols, 1,2-propanediol and 1,3-propanediol, are isomer with identical density and close viscosity. By keeping the water volume fraction constant and playing with the 1,2-propanediol and 1,3-propanediol volume fractions of the solvents, the mixtures surface tensions differ up to 10 mN/m for identical/constant reactant concentration, density and viscosity. 3 precipitation behaviors were identified for the coalescence of water/diols/recatants drops depending on the oxalic excess. The corresponding precipitates patterns are visualized by optical microscopy and the precipitates are characterized by confocal microscopy SEM, XRD and SAXS measurements. In the intermediate oxalic excess regime, formation of periodic patterns can be observed. These patterns consist in alternating cerium oxalate precipitates with distinct morphologies, namely needles and “microflowers”. Such periodic fringes can be explained by a feedback mechanism between convection, reaction and the diffusion.show moreshow less
  • Die Kontrolle der Morphologie und Größe fester durch Fällung erzeugter Partikel ist eine wichtige Herausforderung in Industrie und Forschung. Insbesondere gilt dies für die Wiederaufbereitung verbrauchter Brennstäber in der Atomindustrie. Die Eigenschaften der Ausfällungen hängen von den Mischbedingungen der Flüssigkeiten in den Prozessen ab. Dennoch sind die Beziehungen zwischen den physischen Charakteristiken der erzeugten Partikeln und den hydrodynamischen Bedingungen ungewiss. In dieser Arbeit werden Zwei-Tropfen-Koalezenz-Experiment genutzt, um die Verbindungen zwischen Hydrodynamik und Fällungsreaktion besser zu verstehen. Zwei Konfigurationen von ruhenden wässrigen Tropfen wurden untersucht: Zum einen Tropfen mit hohem Kontaktwinkel (> 90°) in Öl und zum anderen Tropfen mit kleinem Kontaktwinkel (< 25°) in Luft. In beiden Fällen wurde Oxalsäure und Ceriumnitrat jeweils in einem Tropfen gelöst. Wenn beide Tropfen einander in Kontakt treten, können sie sich vereinigen. Dabei mischen sich die Reagenzien und erzeugenDie Kontrolle der Morphologie und Größe fester durch Fällung erzeugter Partikel ist eine wichtige Herausforderung in Industrie und Forschung. Insbesondere gilt dies für die Wiederaufbereitung verbrauchter Brennstäber in der Atomindustrie. Die Eigenschaften der Ausfällungen hängen von den Mischbedingungen der Flüssigkeiten in den Prozessen ab. Dennoch sind die Beziehungen zwischen den physischen Charakteristiken der erzeugten Partikeln und den hydrodynamischen Bedingungen ungewiss. In dieser Arbeit werden Zwei-Tropfen-Koalezenz-Experiment genutzt, um die Verbindungen zwischen Hydrodynamik und Fällungsreaktion besser zu verstehen. Zwei Konfigurationen von ruhenden wässrigen Tropfen wurden untersucht: Zum einen Tropfen mit hohem Kontaktwinkel (> 90°) in Öl und zum anderen Tropfen mit kleinem Kontaktwinkel (< 25°) in Luft. In beiden Fällen wurde Oxalsäure und Ceriumnitrat jeweils in einem Tropfen gelöst. Wenn beide Tropfen einander in Kontakt treten, können sie sich vereinigen. Dabei mischen sich die Reagenzien und erzeugen Ceriumoxalat. In Abhängigkeit von Lösungsmitteln werden die Eigenschaften der Fällung sowie ihr Einfluss auf die Hydrodynamik untersucht. In Experimenten Tropfen in Luft ist es außerdem möglich, mittels Wasser/Diol-Mischungen den Oberflächenspannungsgradienten zwischen beiden Tropfenflüssigkeiten zu ändern. Damit ist es möglich den resultierenden Marangoni-Fluss zu kontrollieren. So werden die hydrodynamischen Bedingungen unabhängig von dem Oxalsäureüberschuss verwirklicht. In diesem Fall werden drei Fällungsverhalten abhängig er Oxalsäure-Konzentration beobachtet. Das Zwischenverhalten zeigt überraschende periodische Strukturen, welche verschiedenen Morphologien bilden, nämlich Nägeln und „Microflower“. Die Strukturen wurden über Optische Mikroskopie Identifiziert und charakterisiert mit Hilfe von Konfokaler Mikroskopie, SEM, XRD und SAXS. Die Entstehung solcher Strukturen könnte durch eine Konvektion- Diffusion- Reaktion-Rückkopplung erklärt werden.show moreshow less
  • Réussir à contrôler la morphologie et la taille de particules solides obtenues par précipitation est un enjeu industriel majeur. C’est notamment le cas dans l’industrie nucléaire pour le recyclage du combustible usé. Les caractéristiques des précipités sont liées aux conditions de mélange des phases liquides dans les procédés. Les corrélations entre les paramètres physiques des particules obtenues et les conditions hydrodynamiques n’ont pas été examinées jusqu’à présent. Dans cette étude, des systèmes expérimentaux originaux, basés sur la coalescence de deux gouttes, sont utilisés afin de mieux comprendre les liens entre hydrodynamique et réaction de précipitation. Deux configurations de gouttes aqueuses ont été investiguées, la première consiste en deux goutes posées à fort angle de contact (>90°) dans l’huile, il s’agit d’un système modèle pour les gouttes en émulsion, la second configuration correspond à deux gouttes posées à faible angle de contact (>25°) dans l’air. Dans chaque cas, une espèce réactive est dissoute dans chaqueRéussir à contrôler la morphologie et la taille de particules solides obtenues par précipitation est un enjeu industriel majeur. C’est notamment le cas dans l’industrie nucléaire pour le recyclage du combustible usé. Les caractéristiques des précipités sont liées aux conditions de mélange des phases liquides dans les procédés. Les corrélations entre les paramètres physiques des particules obtenues et les conditions hydrodynamiques n’ont pas été examinées jusqu’à présent. Dans cette étude, des systèmes expérimentaux originaux, basés sur la coalescence de deux gouttes, sont utilisés afin de mieux comprendre les liens entre hydrodynamique et réaction de précipitation. Deux configurations de gouttes aqueuses ont été investiguées, la première consiste en deux goutes posées à fort angle de contact (>90°) dans l’huile, il s’agit d’un système modèle pour les gouttes en émulsion, la second configuration correspond à deux gouttes posées à faible angle de contact (>25°) dans l’air. Dans chaque cas, une espèce réactive est dissoute dans chaque goutte, à savoir de l’acide oxalique ou du nitrate de cérium dans la seconde. Lorsque les deux gouttes se touchent, elles peuvent éventuellement coalescer, alors les espèces chimiques se mélangent et réagissent pour produire un précipité d’oxalate de cérium. Les caractéristiques de ce précipité et ses effets sur l’hydrodynamique sont examinés en fonction du solvant utilisé. De plus, dans le cas des gouttes posées sur une surface de silice dans l’air, une différence de tension de surface entre deux gouttes crée un gradient qui génère un flux de Marangoni dirigé de la goutte de faible tension de surface au-dessus de la goutte de forte tension de surface. En jouant sur la différence de tension de surface entre les deux gouttes, et ainsi sur le flux de Marangoni, il est possible de modifier les conditions hydrodynamiques lors de la coalescence des gouttes. Des mélanges eau/diols ont été utilisés comme solvant afin de pouvoir modifier la différence de tension de surface entre les liquides des deux gouttes indépendamment de leur concentration en réactif. Les diols utilisés, le 1,2-propanediol et le 1,3-propanediol sont des isomères, ils sont la même densité, des viscosités semblables mais des tensions de surface différentes. En fixant la fraction volumique d’eau dans le solvant, et en jouant sur les fractions volumiques de chaque diols, il est possible de contrôler la tension de surface des mélanges sur une gamme de 10 mN/m pour une concentration en réactifs donnée, et en conservant la densité et viscosité des solvants. Trois régimes de précipitation ont été identifiés dans le cas de la coalescence de gouttes d’eau/diols/réactifs en fonction de l’excès oxalique. Les motifs de précipitation en découlant ont été imagés par microscopie optique et les différents précipités ont été caractérisés à l’aide de microscopie confocale, MEB, DRX et SAXS. Le régime intermédiaire présente des motifs périodiques surprenants. Ces motifs correspondent à des domaines nettement délimités d’oxalate de cérium de différentes morphologies, à savoir des aiguilles et des « microflowers ». L’obtention de tels motifs peut s’expliquer par un mécanisme de rétroaction entre convection, réaction et diffusion.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Marie Jehannin
URN:urn:nbn:de:kobv:517-opus4-88364
Subtitle (English):the case of cerium oxalate particles produced during coalescence of drops
Subtitle (German):Ceroxalat-Partikel, entstanden während der Koaleszenz von Tropfen
Supervisor(s):Helmuth Moehwald, Thomas Zemb
Publication type:Doctoral Thesis
Language:English
Publication year:2015
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2015/02/12
Contributing corporation:Université de Montpellier
Release date:2016/03/07
Tag:Fällungsreaktion; Koaleszenz; Marangoni-Fluss; Oxalat-Fällung; Tropfen; periodisches Muster
Marangoni flow; coalescence; drop; oxalic precipitation; periodic pattern
coalescence; flux de Marangoni; gouttes; motif périodique; précipitation; précipitation oxalique
Number of pages:xii, 130
RVK - Regensburg classification:VE 5070, VE 9677
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
DDC classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
PACS classification:80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 82.00.00 Physical chemistry and chemical physics; Electronic structure theory of atoms and molecules, see 31.15.-p; Electronic structure theory of condensed matter, see section 71; Electronic structure theory for biomolecules, see 87.10.-e; Electronic structure of / 82.90.+j Other topics in physical chemistry and chemical physics (restricted to new topics in section 82)
License (German):License LogoCC-BY-NC-SA - Namensnennung, nicht kommerziell, Weitergabe zu gleichen Bedingungen 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.