The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 58 of 1709
Back to Result List

Efficient chromium abstraction from aqueous solution using a low-cost biosorbent: Nauclea diderrichii seed biomass waste

  • Toxic Cr(III) which poses environmental hazard to flora and fauna was efficiently abstracted by low-cost Nauclea diderrichii seed biomass (NDS) with good sequestral capacity for this metal was investigated in this study. The NDS surface analyses showed that it has a specific surface area of 5.36 m(2)/g and pHpzc of 4.90. Thermogravimetric analysis of NDS showed three consecutive weight losses from 50-200 degrees C (ca. 5%), 200-400 C (ca. 35%), >400 degrees C (ca. 10%), corresponding to external water molecules, structural water molecules and heat induced condensation reactions respectively. Differential thermogram of NDS presented a large endothermic peak between 20-510 degrees C suggesting bond breakage and dissociation with the ultimate release of small molecules. The experimental data showed kinetically fast biosorption with increased initial Cr(III) concentrations, indicating the role of external mass transfer mechanism as the rate controlling mechanism in this adsorption process. The Langmuir biosorption capacity of NDS wasToxic Cr(III) which poses environmental hazard to flora and fauna was efficiently abstracted by low-cost Nauclea diderrichii seed biomass (NDS) with good sequestral capacity for this metal was investigated in this study. The NDS surface analyses showed that it has a specific surface area of 5.36 m(2)/g and pHpzc of 4.90. Thermogravimetric analysis of NDS showed three consecutive weight losses from 50-200 degrees C (ca. 5%), 200-400 C (ca. 35%), >400 degrees C (ca. 10%), corresponding to external water molecules, structural water molecules and heat induced condensation reactions respectively. Differential thermogram of NDS presented a large endothermic peak between 20-510 degrees C suggesting bond breakage and dissociation with the ultimate release of small molecules. The experimental data showed kinetically fast biosorption with increased initial Cr(III) concentrations, indicating the role of external mass transfer mechanism as the rate controlling mechanism in this adsorption process. The Langmuir biosorption capacity of NDS was 483.81 mg/g. The use of the corrected Akaike Information Criterion tool for ranking equilibrium models suggested that the Freundlich model best described the experimental data, which is an indication of the heterogeneous nature of the active sites on the surface of NDS. N. diderrichii seed biomass is an easily sourced, cheap and environmental friendly biosorbent which will serve as a good and cost effective alternative to activated carbon for the treatment of polluted water and industrial effluents. (C) 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Martins O. Omorogie, Jonathan Oyebamiji Babalola, Emmanuel I. Unuabonah, Weiguo Song, Jian Ru Gong
DOI:https://doi.org/10.1016/j.jscs.2012.09.017
ISSN:1319-6103
ISSN:2212-4640
Title of parent work (English):Journal of Saudi Chemical Society
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2016
Publication year:2016
Release date:2020/03/22
Tag:Adsorption; Biomass; Equilibrium; External mass transfer; Kinetics; Water
Volume:20
Number of pages:9
First page:49
Last Page:57
Funding institution:Academy of Sciences for the Developing World and the Chinese Academy of Sciences (TWAS-CAS); Natural Science Foundation of China [21005023, 91123003]; National Basic Research Program of China [2011CB933401]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Chemie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.