The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 77 of 2047
Back to Result List

Evaluation of proxies for seismic site conditions in large urban areas the example of Santiago de Chile

  • Characterizing the local site response in large cities is an important step towards seismic hazard assessment. To this regard, single station seismic noise measurements were carried out at 146 sites in the northern part of Santiago de Chile. This extensive survey allowed the fundamental resonance frequency of the sedimentary cover, derived from horizontal-to-vertical (H/V) spectral ratios, to be mapped. By inverting the spectral ratios under the constraint of the thickness of the sedimentary cover, known from previous gravimetric measurements, local S-wave velocity profiles have been retrieved. After interpolation between the individual profiles, the resulting high resolution 3D S-wave velocity model allows the entire area, as well as deeper parts of the basin, to be represented in great detail. Since one lithology shows a great scatter in the velocity values only a very general correlation between S-wave velocity in the uppermost 30 m (v(s)(30)) and local geology is found. Local S-wave velocity profiles can serve as a key factor inCharacterizing the local site response in large cities is an important step towards seismic hazard assessment. To this regard, single station seismic noise measurements were carried out at 146 sites in the northern part of Santiago de Chile. This extensive survey allowed the fundamental resonance frequency of the sedimentary cover, derived from horizontal-to-vertical (H/V) spectral ratios, to be mapped. By inverting the spectral ratios under the constraint of the thickness of the sedimentary cover, known from previous gravimetric measurements, local S-wave velocity profiles have been retrieved. After interpolation between the individual profiles, the resulting high resolution 3D S-wave velocity model allows the entire area, as well as deeper parts of the basin, to be represented in great detail. Since one lithology shows a great scatter in the velocity values only a very general correlation between S-wave velocity in the uppermost 30 m (v(s)(30)) and local geology is found. Local S-wave velocity profiles can serve as a key factor in seismic hazard assessment, since they allow an estimate of the amplification potential of the sedimentary cover. Mapping the intensity distribution of the 27 February 2010 Maule, Chile, event (Mw = 8.8) the results indicate that local amplification of the ground motion might partially explain the damage distribution and encourage the use of the low cost seismic noise techniques for the study of seismic site effects.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Marco PilzORCiD, Stefano ParolaiORCiD, Matteo Picozzi, Jochen Zschau
DOI:https://doi.org/10.1016/j.pce.2011.01.007
ISSN:1474-7065
Title of parent work (English):Physics and chemistry of the earth
Publisher:Elsevier
Place of publishing:Oxford
Publication type:Article
Language:English
Year of first publication:2011
Publication year:2011
Release date:2017/03/26
Tag:Ambient seismic noise; H/V ratio; Inversion; S-wave velocity; Site effects
Volume:36
Issue:16
Number of pages:8
First page:1259
Last Page:1266
Funding institution:Helmholtz research initiative "Risk Habitat Megacity"
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.