The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 82 of 3253
Back to Result List

Form and function in hillslope hydrology

  • The study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigationThe study deals with the identification and characterization of rapid subsurface flow structures through pedo- and geo-physical measurements and irrigation experiments at the point, plot and hillslope scale. Our investigation of flow-relevant structures and hydrological responses refers to the general interplay of form and function, respectively. To obtain a holistic picture of the subsurface, a large set of different laboratory, exploratory and experimental methods was used at the different scales. For exploration these methods included drilled soil core profiles, in situ measurements of infiltration capacity and saturated hydraulic conductivity, and laboratory analyses of soil water retention and saturated hydraulic conductivity. The irrigation experiments at the plot scale were monitored through a combination of dye tracer, salt tracer, soil moisture dynamics, and 3-D time-lapse ground penetrating radar (GPR) methods. At the hillslope scale the subsurface was explored by a 3-D GPR survey. A natural storm event and an irrigation experiment were monitored by a dense network of soil moisture observations and a cascade of 2-D time-lapse GPR "trenches". We show that the shift between activated and non-activated state of the flow paths is needed to distinguish structures from overall heterogeneity. Pedo-physical analyses of point-scale samples are the basis for sub-scale structure inference. At the plot and hillslope scale 3-D and 2-D time-lapse GPR applications are successfully employed as non-invasive means to image subsurface response patterns and to identify flow-relevant paths. Tracer recovery and soil water responses from irrigation experiments deliver a consistent estimate of response velocities. The combined observation of form and function under active conditions provides the means to localize and characterize the structures (this study) and the hydrological processes (companion study Angermann et al., 2017, this issue).show moreshow less

Download full text files

  • pmnr665.pdfeng
    (14589KB)

    SHA-1: 8fce5e1d86e4066e5ac6e3ae146701c3916d2c88

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Conrad Jackisch, Lisa AngermannORCiD, Niklas AllroggenORCiDGND, Matthias Sprenger, Theresa BlumeORCiD, Jens TronickeORCiDGND, Erwin Zehe
URN:urn:nbn:de:kobv:517-opus4-419188
DOI:https://doi.org/10.25932/publishup-41918
ISSN:1866-8372
Title of parent work (English):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Subtitle (English):in situ imaging and characterization of flow-relevant structures
Publication series (Volume number):Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (665)
Publication type:Postprint
Language:English
Date of first publication:2019/03/04
Publication year:2017
Publishing institution:Universität Potsdam
Release date:2019/03/04
Tag:Catchment Hydrology; Ground Penetrating Radar; field; model; multiple scales; preferential flow; soil moisture; solute transport; tracer; water content
Issue:665
Number of pages:27
Source:Hydrology and Earth System Sciences 21 (2017), pp. 3749–3775 DOI 10.5194/hess-21-3749-2017
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Peer review:Referiert
Publishing method:Open Access
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.