The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 8 of 29
Back to Result List

Orbital-specific mapping of the ligand exchange dynamics of Fe(CO)(5) in solution

  • Transition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion(1,2). Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site(3-11) that need to be controlled to optimize complexes for photocatalytic hydrogen production(8) and selective carbon-hydrogen bond activation(9-11). An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)(5) in solution, that the photo-induced removal of CO generates theTransition-metal complexes have long attracted interest for fundamental chemical reactivity studies and possible use in solar energy conversion(1,2). Electronic excitation, ligand loss from the metal centre, or a combination of both, creates changes in charge and spin density at the metal site(3-11) that need to be controlled to optimize complexes for photocatalytic hydrogen production(8) and selective carbon-hydrogen bond activation(9-11). An understanding at the molecular level of how transition-metal complexes catalyse reactions, and in particular of the role of the short-lived and reactive intermediate states involved, will be critical for such optimization. However, suitable methods for detailed characterization of electronic excited states have been lacking. Here we show, with the use of X-ray laser-based femtosecond-resolution spectroscopy and advanced quantum chemical theory to probe the reaction dynamics of the benchmark transition-metal complex Fe(CO)(5) in solution, that the photo-induced removal of CO generates the 16-electron Fe(CO)(4) species, a homogeneous catalyst(12,13) with an electron deficiency at the Fe centre(14,15), in a hitherto unreported excited singlet state that either converts to the triplet ground state or combines with a CO or solvent molecule to regenerate a penta-coordinated Fe species on a sub-picosecond timescale. This finding, which resolves the debate about the relative importance of different spin channels in the photochemistry of Fe(CO)(5) (refs 4, 16-20), was made possible by the ability of femtosecond X-ray spectroscopy to probe frontier-orbital interactions with atom specificity. We expect the method to be broadly applicable in the chemical sciences, and to complement approaches that probe structural dynamics in ultrafast processes.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Philippe Wernet, Kristjan KunnusORCiD, Ida Josefsson, Ivan Rajkovic, Wilson Quevedo, Martin BeyeORCiDGND, Simon Schreck, S. Gruebel, Mirko Scholz, Dennis Nordlund, Wenkai Zhang, Robert W. Hartsock, William F. Schlotter, Joshua J. Turner, Brian Kennedy, Franz Hennies, Frank M. F. de Groot, Kelly J. Gaffney, Simone Techert, Michael OdeliusORCiD, Alexander FöhlischORCiDGND
DOI:https://doi.org/10.1038/nature14296
ISSN:0028-0836
ISSN:1476-4687
Pubmed ID:https://pubmed.ncbi.nlm.nih.gov/25832405
Title of parent work (English):Nature : the international weekly journal of science
Publisher:Nature Publ. Group
Place of publishing:London
Publication type:Article
Language:English
Year of first publication:2015
Publication year:2015
Release date:2017/03/27
Volume:520
Issue:7545
Number of pages:4
First page:78
Last Page:81
Funding institution:Volkswagen Stiftung; Swedish Research Council; Carl Tryggers Foundation; Magnus Bergvall Foundation; Collaborative Research Centers [SFB 755, SFB Biosciences Division of the Office of Basic Energy Sciences, Office of Science, US Department of Energy; LCLS; Stanford University through the Stanford Institute for Materials Energy Sciences (SIMES); Lawrence Berkeley National Laboratory (LBNL); University of Hamburg through the BMBF priority program [FSP 301]; Center for Free Electron Laser Science (CFEL)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.