The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 29 of 55
Back to Result List

Optimized preparation of elastically soft, highly piezoelectric, cellular ferroelectrets from nonvoided poly(ethylene terephthalate) films

  • Electrically charged cellular polymer films can exhibit very high piezoelectric activity and are therefore more and more often employed in advanced electromechanical and electro-acoustical transducers. In this paper, we report an optimized sequence of steps for preparing such ferroelectrets from commercial nonvoided ploy(ethylene terephthalate) (PETP) films by means of foaming with CO2 biaxial mechanical stretching, controlled void inflation, and bipolar electric charging. The nonvoid PETP films foamed with supercritical CO2 at a suitably high pressure and subsequently annealed for stabilization. The cellular foam structure was further optimized by means of well controlled biaxial stretching in a commercial stretcher and sometimes subsequent inflamation in a pressure chamber. Bipolar electric charging of the internal voids was achieved through the application of high electric fields in an SF0 atmosphere. The new optimized PETP ferroelectric exhibit quite large piezoelectric coefficients up to almost 500 pCN(-1), for which unusuallyElectrically charged cellular polymer films can exhibit very high piezoelectric activity and are therefore more and more often employed in advanced electromechanical and electro-acoustical transducers. In this paper, we report an optimized sequence of steps for preparing such ferroelectrets from commercial nonvoided ploy(ethylene terephthalate) (PETP) films by means of foaming with CO2 biaxial mechanical stretching, controlled void inflation, and bipolar electric charging. The nonvoid PETP films foamed with supercritical CO2 at a suitably high pressure and subsequently annealed for stabilization. The cellular foam structure was further optimized by means of well controlled biaxial stretching in a commercial stretcher and sometimes subsequent inflamation in a pressure chamber. Bipolar electric charging of the internal voids was achieved through the application of high electric fields in an SF0 atmosphere. The new optimized PETP ferroelectric exhibit quite large piezoelectric coefficients up to almost 500 pCN(-1), for which unusually low elastic stiffness of only around 0.3 MPa are essential. The PETP foam ferroelectrics posses unclamped thickenss-extension resonance frequences between approximately 120 and 250 kHz, and are thus highly suitable for several established as well as novel ultrasonic-transductant applications.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Werner WirgesORCiD, Michael WegenerORCiDGND, Olena Voronina, Larissa Zirkel, Reimund GerhardORCiDGND
URL:http://onlinelibrary.wiley.com/doi/10.1002/adfm.200600162/pdf
DOI:https://doi.org/10.1002/adfm.200600162
Publication type:Article
Language:English
Year of first publication:2007
Publication year:2007
Release date:2017/03/25
Source:Advanced Functional Materials. - 17 (2007), 2, S. 324 - 329
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.