The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 19 of 13068
Back to Result List

Analytical and numerical elastic dislocation models of volcano deformation processes

Analytische und numerische Dislokationsmodelle von Verformungsprozessen an Vulkanen

  • The advances in modern geodetic techniques such as the global navigation satellite system (GNSS) and synthetic aperture radar (SAR) provide surface deformation measurements with an unprecedented accuracy and temporal and spatial resolutions even at most remote volcanoes on Earth. Modelling of the high-quality geodetic data is crucial for understanding the underlying physics of volcano deformation processes. Among various approaches, mathematical models are the most effective for establishing a quantitative link between the surface displacements and the shape and strength of deformation sources. Advancing the geodetic data analyses and hence, the knowledge on the Earth’s interior processes, demands sophisticated and efficient deformation modelling approaches. Yet the majority of these models rely on simplistic assumptions for deformation source geometries and ignore complexities such as the Earth’s surface topography and interactions between multiple sources. This thesis addresses this problem in the context of analytical andThe advances in modern geodetic techniques such as the global navigation satellite system (GNSS) and synthetic aperture radar (SAR) provide surface deformation measurements with an unprecedented accuracy and temporal and spatial resolutions even at most remote volcanoes on Earth. Modelling of the high-quality geodetic data is crucial for understanding the underlying physics of volcano deformation processes. Among various approaches, mathematical models are the most effective for establishing a quantitative link between the surface displacements and the shape and strength of deformation sources. Advancing the geodetic data analyses and hence, the knowledge on the Earth’s interior processes, demands sophisticated and efficient deformation modelling approaches. Yet the majority of these models rely on simplistic assumptions for deformation source geometries and ignore complexities such as the Earth’s surface topography and interactions between multiple sources. This thesis addresses this problem in the context of analytical and numerical volcano deformation modelling. In the first part, new analytical solutions for triangular dislocations (TDs) in uniform infinite and semi-infinite elastic media have been developed. Through a comprehensive investigation, the locations and causes of artefact singularities and numerical instabilities associated with TDs have been determined and these long-standing drawbacks have been addressed thoroughly. This approach has then been extended to rectangular dislocations (RDs) with full rotational degrees of freedom. Using this solution in a configuration of three orthogonal RDs a compound dislocation model (CDM) has been developed. The CDM can represent generalized volumetric and planar deformation sources efficiently. Thus, the CDM is relevant for rapid inversions in early warning systems and can also be used for detailed deformation analyses. In order to account for complex source geometries and realistic topography in the deformation models, in this thesis the boundary element method (BEM) has been applied to the new solutions for TDs. In this scheme, complex surfaces are simulated as a continuous mesh of TDs that may possess any displacement or stress boundary conditions in the BEM calculations. In the second part of this thesis, the developed modelling techniques have been applied to five different real-world deformation scenarios. As the first and second case studies the deformation sources associated with the 2015 Calbuco eruption and 2013–2016 Copahue inflation period have been constrained by using the CDM. The highly anisotropic source geometries in these two cases highlight the importance of using generalized deformation models such as the CDM, for geodetic data inversions. The other three case studies in this thesis involve high-resolution dislocation models and BEM calculations. As the third case, the 2013 pre-explosive inflation of Volcán de Colima has been simulated by using two ellipsoidal cavities, which locate zones of pressurization in the volcano’s lava dome. The fourth case study, which serves as an example for volcanotectonics interactions, the 3-D kinematics of an active ring-fault at Tendürek volcano has been investigated through modelling displacement time series over the 2003–2010 time period. As the fifth example, the deformation sources associated with North Korea’s underground nuclear test in September 2017 have been constrained. These examples demonstrate the advancement and increasing level of complexity and the general applicability of the developed dislocation modelling techniques. This thesis establishes a unified framework for rapid and high-resolution dislocation modelling, which in addition to volcano deformations can also be applied to tectonic and humanmade deformations.show moreshow less
  • Fortschritte in modernen geodätischen Techniken wie dem globalen Navigationssatellitensystem (GNSS) und dem Synthetic Apertur Radar (SAR), liefern Messungen der Oberflächenverformung mit einer beispiellosen Genauigkeit sowie zeitlichen und räumlichen Auflösungen, selbst an abgelegensten Vulkanen. Die Modellierung von hochqualitativen geodätischen Daten ist entscheidend für das Verständnis der zugrundeliegenden Physik der Verformungsprozesse an diesen Vulkanen. Um eine quantitative Verbindung zwischen den Oberflächenverschiebungen und der Form und Stärke von Verformungsquellen herzustellen, sind mathematische Modelle am effektivsten. Die Fortschnitte in geodätischen Datenanalysen und damit das Wissen über die Prozesse im Inneren der Erde erfordern ausgefeilte und effiziente Ansätze der Verformungsmodellierung. Die meisten dieser Modelle beruhen jedoch auf vereinfachten Annahmen der Geometrien der Verformungsquellen und ignorieren Komplexitäten wie die Erdoberflächentopographie und Wechselwirkungen zwischen mehreren Quellen. DieseFortschritte in modernen geodätischen Techniken wie dem globalen Navigationssatellitensystem (GNSS) und dem Synthetic Apertur Radar (SAR), liefern Messungen der Oberflächenverformung mit einer beispiellosen Genauigkeit sowie zeitlichen und räumlichen Auflösungen, selbst an abgelegensten Vulkanen. Die Modellierung von hochqualitativen geodätischen Daten ist entscheidend für das Verständnis der zugrundeliegenden Physik der Verformungsprozesse an diesen Vulkanen. Um eine quantitative Verbindung zwischen den Oberflächenverschiebungen und der Form und Stärke von Verformungsquellen herzustellen, sind mathematische Modelle am effektivsten. Die Fortschnitte in geodätischen Datenanalysen und damit das Wissen über die Prozesse im Inneren der Erde erfordern ausgefeilte und effiziente Ansätze der Verformungsmodellierung. Die meisten dieser Modelle beruhen jedoch auf vereinfachten Annahmen der Geometrien der Verformungsquellen und ignorieren Komplexitäten wie die Erdoberflächentopographie und Wechselwirkungen zwischen mehreren Quellen. Diese Doktorarbeit befasst sich mit diesem Problem im Kontext der analytischen und numerischen Vulkanverformungsmodellierung. Im ersten Schritt wurden neue analytische Lösungen für dreieckige Dislokationen (triangular dislocation-TD) im gleichförmigen elastischen Voll- und Halbraum entwickelt. Durch eine umfassende Untersuchung wurden die Orte und Ursachen von TDs verbundenen Artefaktsingularitäten und numerischen Instabilitäten identifiziert und diese Problematik gelöst. Dieser Ansatz wurde dann auf rechteckige Dislokationen (rectangular dislocation-RD) mit vollen Rotationsfreiheitsgraden erweitert. Unter Verwendung dieser Lösung in einer Konfiguration von drei orthogonalen RDs wurde ein “Zusammengesetztes Dislokationsmodel” (compound dislocation model-CDM) entwickelt. Das CDM kann verallgemeinerte volumetrische und planare Verformungsquellen effizient darstellen. Somit ist das CDM für schnelle Inversionen in Frühwarnungssystemen relevant und kann auch für detaillierte Verformungsanalysen verwendet werden. Um komplexe Quellengeometrien und eine realistische Topographie in den Verformungsmodellen dieser Untersuchung zu berücksichtigen, wurde die Randelementmethode (REM) auf die neuen Lösungen für TDs angewendet. In diesem Schema werden komplexe Oberflächen als ein kontinuierliches Netz von DVs simuliert, die in den REM-Berechnungen beliebige Verschiebungs- oder Spannungsgrenzbedingungen aufweisen können. Als Beispiele wurden die entwickelten Modellierungstechniken auf fünf verschiedene reale Verformungsszenarien angewendet. Das erste und zweite Beispiel, die Calbuco-Eruption 2015 und die 2013–2016 Copahue-Aufwölbungsperiode, wurden durch die Verwendung des CDM näher beschrieben. Die hoch anisotropen Quellengeometrien in diesen beiden Fällen unterstreichen die Bedeutung der Verwendung verallgemeinerter Verformungsmodelle wie dem CDM für geodätische Dateninversionen. Weitere Fallstudien dieser Doktorarbeit umfassen hochauflösende Versetzungsmodelle und REM-Berechnungen. Die Aufwölbung 2013 am Volcán de Colima wurde simuliert, indem zwei ellipsoidale Quellen verwendet wurden, die Druckzonen im Lavadom des Vulkans lokalisieren. Danach, als Beispiel für Vulkantektonik-Interaktionen, wurde die 3-D-Kinematik einer aktiven Ringstörung am Tendürek-Vulkan durch Modellierung von InSAR-Zeitreihen über die Zeitperiode 2003–2010 simuliert. Als letztes Beispiel wurden die Verformungsquellen, die im Zusammenhang mit Nordkoreas unterirdischem Atomtest im September 2017 stehen, simuliert und der Einsatz der verwendeten Methoden auch in nicht vulkanischen Terrain gezeigt. Diese Beispiele zeigen den Fortschritt und das zunehmende Niveau der Komplexität und die allgemeine Anwendbarkeit der entwickelten Dislokationsmodellierungstechniken. Diese Doktorarbeit unterstreicht die Anwendung von neuer schneller und hochauflösender Dislokationsmodellierung, die neben Vulkanverformungen auch auf tektonische und vom Menschen verursachte Verformungen angewendet werden kann.show moreshow less

Download full text files

Export metadata

Metadaten
Author details:Mehdi NikkhooORCiD
URN:urn:nbn:de:kobv:517-opus4-429720
DOI:https://doi.org/10.25932/publishup-42972
Reviewer(s):François BeauducelORCiD, Matthias OhrnbergerORCiDGND, Thomas R. WalterORCiDGND
Supervisor(s):Thomas R. Walter, Torsten Dahm
Publication type:Doctoral Thesis
Language:English
Publication year:2019
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2019/05/15
Release date:2019/06/12
Tag:Krustenverformungen; Vulkanverformungsmodellierung; Zusammengesetztes Dislokationsmodel (CDM); dreieckige Dislokationen (TDs); inverse Modellirung
Compound dislocation models (CDMs); Inverse modelling; Triangular dislocations (TDs); Volcano deformation modelling; crustal deformations
Number of pages:x, 175
RVK - Regensburg classification:UT 2250, SK 955
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
DDC classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
MSC classification:86-XX GEOPHYSICS [See also 76U05, 76V05]
License (German):License LogoKeine öffentliche Lizenz: Unter Urheberrechtsschutz
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.