The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 95 of 238
Back to Result List

Rapid genetic differentiation between ex situ and their in situ source populations - an example of the endangered Silene otites (Caryophyllaceae)

  • Ex situ cultivation in botanic gardens could be one possibility to preserve plant species diversity and genetic variation. However, old ex situ populations are often sparsely documented. We were able to retrieve three different ex situ populations and their source in situ populations of the endangered plant species Silene otites after 20-36 years of isolation. Furthermore, three additional wild populations were included in the analysis. Population genetic diversity and differentiation were analysed using AFLP markers. Genetic variation in the ex situ populations was lower than the variation found in the in situ populations. Strong differentiation (F-ST = 0.21-0.36) between corresponding in situ and ex situ populations was observed. Bayesian clustering approach also showed a distinct genetic separation between in situ and ex situ populations. The high genetic differentiation and loss of genetic diversity during spatial and temporal isolation in the ex situ populations can be attributable to small population sizes and unconsciousEx situ cultivation in botanic gardens could be one possibility to preserve plant species diversity and genetic variation. However, old ex situ populations are often sparsely documented. We were able to retrieve three different ex situ populations and their source in situ populations of the endangered plant species Silene otites after 20-36 years of isolation. Furthermore, three additional wild populations were included in the analysis. Population genetic diversity and differentiation were analysed using AFLP markers. Genetic variation in the ex situ populations was lower than the variation found in the in situ populations. Strong differentiation (F-ST = 0.21-0.36) between corresponding in situ and ex situ populations was observed. Bayesian clustering approach also showed a distinct genetic separation between in situ and ex situ populations. The high genetic differentiation and loss of genetic diversity during spatial and temporal isolation in the ex situ populations can be attributable to small population sizes and unconscious selection during cultivation. Therefore, adequate sampling prior to ex situ cultivation and large effective population sizes are important to preserve genetic diversity. Near-natural cultivation allowing for generation overlap and interspecific competition without artificial selection is recommended as being best for the maintenance of the genetic constitution.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Daniel Lauterbach, Michael BurkartGND, Birgit Gemeinholzer
DOI:https://doi.org/10.1111/j.1095-8339.2011.01185.x
ISSN:0024-4074
Title of parent work (English):Botanical journal of the Linnean Society
Publisher:Wiley-Blackwell
Place of publishing:Hoboken
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:AFLP; botanical garden; conservation genetics; founder effect; population size
Volume:168
Issue:1
Number of pages:12
First page:64
Last Page:75
Funding institution:DBU; Heidehofstiftung; friends of the Botanic Garden Berlin
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Biochemie und Biologie
Peer review:Referiert
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.