• search hit 2 of 2
Back to Result List

Development of techniques for earthquake microzonation studies in different urban environment

Entwicklung von Techniken für Mikrozonierungsstudien von Erdbeben in verschiedenen städtischen Umgebungen

  • The proliferation of megacities in many developing countries, and their location in areas where they are exposed to a high risk from large earthquakes, coupled with a lack of preparation, demonstrates the requirement for improved capabilities in hazard assessment, as well as the rapid adjustment and development of land-use planning. In particular, within the context of seismic hazard assessment, the evaluation of local site effects and their influence on the spatial distribution of ground shaking generated by an earthquake plays an important role. It follows that the carrying out of earthquake microzonation studies, which aim at identify areas within the urban environment that are expected to respond in a similar way to a seismic event, are essential to the reliable risk assessment of large urban areas. Considering the rate at which many large towns in developing countries that are prone to large earthquakes are growing, their seismic microzonation has become mandatory. Such activities are challenging and techniques suitable forThe proliferation of megacities in many developing countries, and their location in areas where they are exposed to a high risk from large earthquakes, coupled with a lack of preparation, demonstrates the requirement for improved capabilities in hazard assessment, as well as the rapid adjustment and development of land-use planning. In particular, within the context of seismic hazard assessment, the evaluation of local site effects and their influence on the spatial distribution of ground shaking generated by an earthquake plays an important role. It follows that the carrying out of earthquake microzonation studies, which aim at identify areas within the urban environment that are expected to respond in a similar way to a seismic event, are essential to the reliable risk assessment of large urban areas. Considering the rate at which many large towns in developing countries that are prone to large earthquakes are growing, their seismic microzonation has become mandatory. Such activities are challenging and techniques suitable for identifying site effects within such contexts are needed. In this dissertation, I develop techniques for investigating large-scale urban environments that aim at being non-invasive, cost-effective and quickly deployable. These peculiarities allow one to investigate large areas over a relative short time frame, with a spatial sampling resolution sufficient to provide reliable microzonation. Although there is a negative trade-off between the completeness of available information and extent of the investigated area, I attempt to mitigate this limitation by combining two, what I term layers, of information: in the first layer, the site effects at a few calibration points are well constrained by analyzing earthquake data or using other geophysical information (e.g., shear-wave velocity profiles); in the second layer, the site effects over a larger areal coverage are estimated by means of single-station noise measurements. The microzonation is performed in terms of problem-dependent quantities, by considering a proxy suitable to link information from the first layer to the second one. In order to define the microzonation approach proposed in this work, different methods for estimating site effects have been combined and tested in Potenza (Italy), where a considerable amount of data was available. In particular, the horizontal-to-vertical spectral ratio computed for seismic noise recorded at different sites has been used as a proxy to combine the two levels of information together and to create a microzonation map in terms of spectral intensity ratio (SIR). In the next step, I applied this two-layer approach to Istanbul (Turkey) and Bishkek (Kyrgyzstan). A similar hybrid approach, i.e., combining earthquake and noise data, has been used for the microzonation of these two different urban environments. For both cities, after having calibrated the fundamental frequencies of resonance estimated from seismic noise with those obtained by analysing earthquakes (first layer), a fundamental frequency map has been computed using the noise measurements carried out within the town (second layer). By applying this new approach, maps of the fundamental frequency of resonance for Istanbul and Bishkek have been published for the first time. In parallel, a microzonation map in terms of SIR has been incorporated into a risk scenario for the Potenza test site by means of a dedicated regression between spectral intensity (SI) and macroseismic intensity (EMS). The scenario study confirms the importance of site effects within the risk chain. In fact, their introduction into the scenario led to an increase of about 50% in estimates of the number of buildings that would be partially or totally collapsed. Last, but not least, considering that the approach developed and applied in this work is based on measurements of seismic noise, their reliability has been assessed. A theoretical model describing the self-noise curves of different instruments usually adopted in microzonation studies (e.g., those used in Potenza, Istanbul and Bishkek) have been considered and compared with empirical data recorded in Cologne (Germany) and Gubbio (Italy). The results show that, depending on the geological and environmental conditions, the instrumental noise could severely bias the results obtained by recording and analysing ambient noise. Therefore, in this work I also provide some guidelines for measuring seismic noise.show moreshow less
  • Aufgrund des enormen Wachstums neuer Megastädte und deren Vordringen in gefährdete Gebiete auf der einen Seite sowie der mangelnden Erdbebenvorsorge in vielen Entwicklungsländern auf der anderen Seite sind verbesserte Verfahren für die Beurteilung der Gefährdung sowie eine rasche Umsetzung bei der Raumplanung erforderlich. Im Rahmen der seismischen Gefährdungsabschätzung spielt insbesondere die Beurteilung lokaler Standorteffekte und deren Einfluss auf die durch ein Erdbeben verursachte räumliche Verteilung der Bodenerschütterung eine wichtige Rolle. Es ist daher unabdingbar, mittels seismischer Mikrozonierungsstudien diejenigen Bereiche innerhalb dicht besiedelter Gebiete zu ermitteln, in denen ein ähnliches Verhalten im Falle seismischer Anregung erwartet wird, um daraus eine zuverlässige Basis bei der Risikoabschätzung großer städtischer Gebiete zu erhalten. Aufgrund des schnellen Wachstums vieler Großstädte in Entwicklungsländern ist eine seismische Mikrozonierung zwingend erforderlich, stellt aber auch eine große HerausforderungAufgrund des enormen Wachstums neuer Megastädte und deren Vordringen in gefährdete Gebiete auf der einen Seite sowie der mangelnden Erdbebenvorsorge in vielen Entwicklungsländern auf der anderen Seite sind verbesserte Verfahren für die Beurteilung der Gefährdung sowie eine rasche Umsetzung bei der Raumplanung erforderlich. Im Rahmen der seismischen Gefährdungsabschätzung spielt insbesondere die Beurteilung lokaler Standorteffekte und deren Einfluss auf die durch ein Erdbeben verursachte räumliche Verteilung der Bodenerschütterung eine wichtige Rolle. Es ist daher unabdingbar, mittels seismischer Mikrozonierungsstudien diejenigen Bereiche innerhalb dicht besiedelter Gebiete zu ermitteln, in denen ein ähnliches Verhalten im Falle seismischer Anregung erwartet wird, um daraus eine zuverlässige Basis bei der Risikoabschätzung großer städtischer Gebiete zu erhalten. Aufgrund des schnellen Wachstums vieler Großstädte in Entwicklungsländern ist eine seismische Mikrozonierung zwingend erforderlich, stellt aber auch eine große Herausforderung dar; insbesondere müssen Verfahren verfügbar sein, mit deren Hilfe rasch eine Abschätzung der Standorteffekte durchgeführt werden kann. In der vorliegenden Arbeit entwickle ich daher Verfahren für die Untersuchung in Großstädten, die darauf abzielen, nicht-invasiv, kostengünstig und schnell durchführbar zu sein. Damit lassen sich innerhalb eines relativ kurzen Zeitraums große Gebiete untersuchen, falls der räumlichen Abstand zwischen den Messpunkten klein genug ist, um eine zuverlässige Mikrozonierung zu gewährleisten. Obwohl es eine gegenläufige Tendenz zwischen der Vollständigkeit aller Informationen und der Größe des untersuchten Gebiets gibt, versuche ich, diese Einschränkung durch Verknüpfung zweier Informationsebenen zu umgehen: In der ersten Ebene werden die Standorteffekte für einige Kalibrierungspunkte durch die Analyse von Erdbeben oder mittels anderer geophysikalischer Datensätze (z.B. Scherwellengeschwindigkeitsprofile) bestmöglich abgeschätzt, in der zweiten Ebene werden die Standorteffekte durch Einzelstationsmessungen des seismischen Rauschens für ein größeres Gebiet bestimmt. Die Mikrozonierung erfolgt hierbei mittels spezifischer, fallabhängiger Parameter unter Berücksichtigung eines geeigneten Anknüpfungspunktes zwischen den beiden Informationensebenen. Um diesen Ansatz der Mikrozonierung, der in dieser Arbeit verfolgt wurde, zu präzisieren, wurden in Potenza (Italien), wo eine beträchtliche Menge an Daten verfügbar war, verschiedene Verfahren untersucht. Insbesondere kann das Spektralverhältnis zwischen den horizontalen und vertikalen Seismometerkomponenten, welche für das seismische Rauschen an mehreren Orten aufgenommen wurde, als eine erste Näherung für die relative Verstärkung der Bodenbewegung verwendet werden, um darauf aufbauend die beiden Informationsebenen zu verknüpfen und eine Mikrozonierung hinsichtlich des Verhältnisses der spektralen Intensität durchzuführen. Anschließend führte ich diesen Zwei-Ebenen-Ansatz auch für Istanbul (Türkei) und Bischkek (Kirgisistan) durch. Für die Mikrozonierung dieser beiden Städte habe ich denselben Hybridansatz, der Daten von Erdbeben und von seismischem Rauschen verbindet, verwendet. Für beide Städte wurde nach Gegenüberstellung der Resonanzfrequenz des Untergrunds, die zum einen mit Hilfe des seismischen Rauschens, zum anderen durch Analyse von Erdbebendaten bestimmt worden ist (erste Ebene), eine Karte der Resonanzfrequenz unter Verwendung weiterer Messungen des seismischen Rauschens innerhalb des Stadtgebiets erstellt (zweite Ebene). Durch die Anwendung dieses neuen Ansatzes sind vor kurzem zum ersten Mal auch Karten für die Resonanzfrequenz des Untergrunds für Istanbul und Bischkek veröffentlicht worden. Parallel dazu wurde für das Testgebiet in Potenza eine auf dem spektralen Intensitätsverhältnis (SIR) basierende Mikrozonierungskarte in ein Risikoszenario mittels der Regression zwischen SIR und makroseismischer Intensität (EMS) integriert. Diese Szenariostudie bestätigt die Bedeutung von Standorteffekten innerhalb der Risikokette; insbesondere führt deren Einbeziehung in das Szenario zu einem Anstieg von etwa 50% bei der Zahl der Gebäude, für die ein teilweiser oder gar vollständiger Zusammenbruch erwartet werden kann. Abschließend wurde der im Rahmen dieser Arbeit entwickelte und angewandte Ansatz auf seine Zuverlässigkeit geprüft. Ein theoretisches Modell, das zur Beschreibung des Eigenrauschens verschiedener Instrumente, die in der Regel in Mikrozonierungsstudien (z. B. in Potenza, Istanbul und Bischkek) zum Einsatz kommen, wurde untersucht, und die Ergebnisse wurden mit Daten verglichen, die vorher bereits in Köln (Deutschland) und Gubbio (Italien) aufgenommen worden waren. Die Ergebnisse zeigen, dass abhängig von den geologischen und umgebenden Bedingungen das Eigenrauschen der Geräte die Ergebnisse bei der Analyse des seismischen Rauschens stark verzerren kann. Deshalb liefere ich in dieser Arbeit auch einige Leitlinien für die Durchführung von Messungen des seismischen Rauschens.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Angelo Strollo
URN:urn:nbn:de:kobv:517-opus-53807
Advisor:Jochen Zschau
Document Type:Doctoral Thesis
Language:English
Year of Completion:2010
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2011/06/28
Release Date:2011/09/09
Tag:Korrelation; Standorteffekte; instrumentelle Seismologie; seismische Rauschen
correlation; instrumental seismology; seismic noise; site effects
RVK - Regensburg Classification:TZ 04110
RVK - Regensburg Classification:TI 03200
RVK - Regensburg Classification:UT 2500
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht