The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 51 of 467
Back to Result List

Ultrafast photoinduced phase transitions in complex materials probed by time-resolved resonant soft x-ray diffraction

Ultraschnelle lichtinduzierte Phasenübergänge in komplexen Materialien untersucht mit zeitaufgelöster resonanter Weichröntgenbeugung

  • In processing and data storage mainly ferromagnetic (FM) materials are being used. Approaching physical limits, new concepts have to be found for faster, smaller switches, for higher data densities and more energy efficiency. Some of the discussed new concepts involve the material classes of correlated oxides and materials with antiferromagnetic coupling. Their applicability depends critically on their switching behavior, i.e., how fast and how energy efficient material properties can be manipulated. This thesis presents investigations of ultrafast non-equilibrium phase transitions on such new materials. In transition metal oxides (TMOs) the coupling of different degrees of freedom and resulting low energy excitation spectrum often result in spectacular changes of macroscopic properties (colossal magneto resistance, superconductivity, metal-to-insulator transitions) often accompanied by nanoscale order of spins, charges, orbital occupation and by lattice distortions, which make these material attractive. Magnetite served as aIn processing and data storage mainly ferromagnetic (FM) materials are being used. Approaching physical limits, new concepts have to be found for faster, smaller switches, for higher data densities and more energy efficiency. Some of the discussed new concepts involve the material classes of correlated oxides and materials with antiferromagnetic coupling. Their applicability depends critically on their switching behavior, i.e., how fast and how energy efficient material properties can be manipulated. This thesis presents investigations of ultrafast non-equilibrium phase transitions on such new materials. In transition metal oxides (TMOs) the coupling of different degrees of freedom and resulting low energy excitation spectrum often result in spectacular changes of macroscopic properties (colossal magneto resistance, superconductivity, metal-to-insulator transitions) often accompanied by nanoscale order of spins, charges, orbital occupation and by lattice distortions, which make these material attractive. Magnetite served as a prototype for functional TMOs showing a metal-to-insulator-transition (MIT) at T = 123 K. By probing the charge and orbital order as well as the structure after an optical excitation we found that the electronic order and the structural distortion, characteristics of the insulating phase in thermal equilibrium, are destroyed within the experimental resolution of 300 fs. The MIT itself occurs on a 1.5 ps timescale. It shows that MITs in functional materials are several thousand times faster than switching processes in semiconductors. Recently ferrimagnetic and antiferromagnetic (AFM) materials have become interesting. It was shown in ferrimagnetic GdFeCo, that the transfer of angular momentum between two opposed FM subsystems with different time constants leads to a switching of the magnetization after laser pulse excitation. In addition it was theoretically predicted that demagnetization dynamics in AFM should occur faster than in FM materials as no net angular momentum has to be transferred out of the spin system. We investigated two different AFM materials in order to learn more about their ultrafast dynamics. In Ho, a metallic AFM below T ≈ 130 K, we found that the AFM Ho can not only be faster but also ten times more energy efficiently destroyed as order in FM comparable metals. In EuTe, an AFM semiconductor below T ≈ 10 K, we compared the loss of magnetization and laser-induced structural distortion in one and the same experiment. Our experiment shows that they are effectively disentangled. An exception is an ultrafast release of lattice dynamics, which we assign to the release of magnetostriction. The results presented here were obtained with time-resolved resonant soft x-ray diffraction at the Femtoslicing source of the Helmholtz-Zentrum Berlin and at the free-electron laser in Stanford (LCLS). In addition the development and setup of a new UHV-diffractometer for these experiments will be reported.show moreshow less
  • In der Datenspeichertechnologie werden bisher hauptsächlich ferromagnetische Materialien eingesetzt. Da mit diesen aber physikalische Grenzen erreicht werden, werden neue Konzepte gesucht, um schnellere und kleinere Schalter, größere Datendichten und eine höherere Energieeffizienz zu erzeugen. Unter den diskutierten Materialklassen finden sich komplexen Übergangsmetalloxide und Materialien mit antiferromagnetischer Kopplung. Die Anwendbarkeit solcher Materialien hängt stark davon ab, wie schnell sich deren Eigenschaften verändern lassen und wieviel Energie dafür eingesetzt werden muss. Die vorliegende Arbeit beschäftigt sich mit ultraschnellen, Nicht-Gleichgewicht-Phasenübergängen genau in solchen Materialien. In Übergangsmetalloxiden führt die enge Kopplung zwischen den unterschiedlichen Freiheitsgraden zu einem effektiven niederenergetischen Anregungsspektrum. Diese Anregungen sind oft verknüpft mit spektakulären makroskopischen Eigenschaften, wie z.B. dem kolossalen Magnetowiderstand, Hochtemperatur-Supraleitung, Metall-In der Datenspeichertechnologie werden bisher hauptsächlich ferromagnetische Materialien eingesetzt. Da mit diesen aber physikalische Grenzen erreicht werden, werden neue Konzepte gesucht, um schnellere und kleinere Schalter, größere Datendichten und eine höherere Energieeffizienz zu erzeugen. Unter den diskutierten Materialklassen finden sich komplexen Übergangsmetalloxide und Materialien mit antiferromagnetischer Kopplung. Die Anwendbarkeit solcher Materialien hängt stark davon ab, wie schnell sich deren Eigenschaften verändern lassen und wieviel Energie dafür eingesetzt werden muss. Die vorliegende Arbeit beschäftigt sich mit ultraschnellen, Nicht-Gleichgewicht-Phasenübergängen genau in solchen Materialien. In Übergangsmetalloxiden führt die enge Kopplung zwischen den unterschiedlichen Freiheitsgraden zu einem effektiven niederenergetischen Anregungsspektrum. Diese Anregungen sind oft verknüpft mit spektakulären makroskopischen Eigenschaften, wie z.B. dem kolossalen Magnetowiderstand, Hochtemperatur-Supraleitung, Metall- Isolator-Übergang, die oft von nanoskaliger Ordnung von Spins, Ladungen, orbitaler Besetzung sowie Gitterverzerrungen begleitet sind. Dadurch werden diese Materialien interessant für Anwendbarkeit. Magnetit, ein Prototyp eines solchen funktionalen Materials zeigt einen Metall-Isolator-Übergang bei T = 123 K. Untersucht man die Ladungs- und orbitale Ordnung sowie die Struktur nach einer optischen Anregung, so findet man, dass die elektronische Struktur und Gitterverzerrung, die kennzeichnend für die Tieftemperaturphase sind, innerhalb der Zeitauflösung des Experiments von 300 fs zerstört wird. Der eigentliche Metall-Isolator-Übergang zeigt sich erst nach 1.5 ps. Die Ergebnisse zeigen, dass MITs in funktionalen Materialien bis zu tausend Mal schneller geschaltet werden können als in vorhandenen Halbleiter-Schaltern. Seit kurzem rücken auch ferrimagnetische und antiferromagnetische Materialen in den Fokus des Interesses. Es wurde im Ferrimagnet GdFeCo gezeigt, dass der Transfer von Drehimpuls zwischen zwei entgegengesetzten Subsystemen mit unterschiedlichen Zeitkonstanten zu einem Umschalten der Magnetisierung führt. Zudem wurde vorhergesagt, dass Demagnetisierungsdynamiken in antiferromagnetischen Materialien schneller ablaufen soll als in ferromagnetischen, da kein Drehimpuls aus dem Spinsystem abgeführt werden muss. Damit wir mehr über antiferromagnetische Dynamik erfahren haben wir zwei unterschiedliche Antiferromagneten untersucht, um sie mit den bekannten FM zu vergleichen. Im metallischen AFM Holmium fanden wir, dass die magnetische Ordnung schneller und zehnmal energieeffizienter zerstört werden kann als in vergleichbaren FM Metallen. In Europium-Tellurid, einem antiferromagnetischem Halbleiter, haben wir den Zerfall der magnetischen Ordnung im Hinblick auf Wechselwirkungen mit der Struktur untersucht. Wir fanden auf kurzen Zeitskalen eine eher entkoppelte Dynamik. Eine Ausnahme ist ein schneller Beitrag zur Gitterdynamik, den wir mit dem Wegfall von Magnetostriktion erklären. Die hier gezeigten Ergebnisse wurden mit Hilfe zeitaufgelöster resonanter weicher Röntgenbeugung an der Femtoslicing Strahlungsquelle des Helmholtz-Zentrums Berlin und am freien Elektronenlaser LCLS gemessen. Zusätzlich wird über die Entwicklung und den Bau eines UHV-Diffraktometers für diese Experimente berichtet.show moreshow less

Download full text files

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Christoph Trabant
URN:urn:nbn:de:kobv:517-opus-71377
Supervisor(s):Alexander Föhlisch
Publication type:Doctoral Thesis
Language:English
Publication year:2014
Publishing institution:Universität Potsdam
Granting institution:Universität Potsdam
Date of final exam:2014/07/02
Release date:2014/08/18
Tag:Antiferromagnetisch; Phasenübergänge; Ultraschnell; Weichröntgenbeugung; nichtgleichgewichts Dynamik
Ultrafast; antiferromagnetic; phase transitions; photoinduced dynamics; soft x-ray diffraction
RVK - Regensburg classification:UP 6300, UQ 5600
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
DDC classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
PACS classification:60.00.00 CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES / 61.00.00 Structure of solids and liquids; crystallography (for surface, interface, and thin film structure, see section 68) / 61.05.-a Techniques for structure determination; Microscopy of surfaces, interfaces, and thin films, see 68.37.-d / 61.05.C- X-ray diffraction and scattering (for x-ray diffractometers, see 07.85.Jy; for x-ray studies of crystal defects, see 61.72.Dd, Ff) / 61.05.cp X-ray diffraction
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 75.00.00 Magnetic properties and materials (for magnetic properties of quantum solids, see 67.80.dk; for magnetic properties related to treatment conditions, see 81.40.Rs; for magnetic properties of superconductors, see 74.25.Ha; for magnetic properties of rocks a / 75.30.-m Intrinsic properties of magnetically ordered materials (for critical point effects, see 75.40.-s) / 75.30.Kz Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.)
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 75.00.00 Magnetic properties and materials (for magnetic properties of quantum solids, see 67.80.dk; for magnetic properties related to treatment conditions, see 81.40.Rs; for magnetic properties of superconductors, see 74.25.Ha; for magnetic properties of rocks a / 75.50.-y Studies of specific magnetic materials / 75.50.Ee Antiferromagnetics
License (German):License LogoCC-BY - Namensnennung 4.0 International
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.