• search hit 30 of 0
Back to Result List

Climatic and tectonic control on fluvial and alluvial fan sequence formation in the Central Makran Range, SE-Iran

  • The geomorphic evolution of the Makran Range of SE-Iran and SW-Pakistan has been controlled by the prevailing SW-Asian monsoon and Mediterranean winter rainfall climate and the surface uplift processes resulting from the Arabia-Eurasia collision. The impact of climate on Quaternary fluvial and alluvial sequence formation and their regional correlation has been little investigated due to limited age control of these sequences. Using Be-10 cosmogenic nuclide exposure ages we established a Middle to Late Pleistocene terrace chronology. Our record tentatively indicates that terrace levels were abandoned towards the transition to or during warmer/pluvial periods (interglacials and/or interstadials) back to Marine Isotope Stage (MIS) 7, but abandoned ages show a large spread. It is hypothesized that pluvial phases correspond with times of enhanced SW-monsoons and a northward shift of the Intertropical Convergence Zone (ITCZ). Furthermore, orbital periodidties can be deduced on frequencies related to obliquity and precession cycles. Overall,The geomorphic evolution of the Makran Range of SE-Iran and SW-Pakistan has been controlled by the prevailing SW-Asian monsoon and Mediterranean winter rainfall climate and the surface uplift processes resulting from the Arabia-Eurasia collision. The impact of climate on Quaternary fluvial and alluvial sequence formation and their regional correlation has been little investigated due to limited age control of these sequences. Using Be-10 cosmogenic nuclide exposure ages we established a Middle to Late Pleistocene terrace chronology. Our record tentatively indicates that terrace levels were abandoned towards the transition to or during warmer/pluvial periods (interglacials and/or interstadials) back to Marine Isotope Stage (MIS) 7, but abandoned ages show a large spread. It is hypothesized that pluvial phases correspond with times of enhanced SW-monsoons and a northward shift of the Intertropical Convergence Zone (ITCZ). Furthermore, orbital periodidties can be deduced on frequencies related to obliquity and precession cycles. Overall, caution has to be placed in sampling and interpreting alluvial deposits, which may have complex inheritance patterns and spatially and temporarily variable catchment erosion histories and terrace-channel dynamics. Beside the dominant climate control on terrace formation, elevated channel steepness indices around major thrusts and numerous knickpoints indicate an additionally tectonic influence on terrace formation. Local incision rates (mean similar to 0.6-0.8 min.a(-1)) are variable in space and time but are similar to uplift rates obtained from coastal terraces and thus suggest a regional surface uplift. (C) 2013 Elsevier B.V. All rights reserved.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Florian Kober, Gerald Zeilinger, Susan Ivy-Ochs, A. Dolati, J. Smit, Peter W. Kubik
DOI:https://doi.org/10.1016/j.gloplacha.2013.09.003
ISSN:0921-8181
ISSN:1872-6364
Title of parent work (English):Global and planetary change
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:Climate; Cosmogenic nuclides; Makran; Monsoon; Tectonics; Terraces
Volume:111
Number of pages:17
First page:133
Last Page:149
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.