• search hit 1 of 0
Back to Result List

1200 years of decadal-scale variability of mediterranean vegetation and climate at Pantelleria Island, Italy

  • A new sedimentary sequence from Lago di Venere on Pantelleria Island, located in the Strait of Sicily between Tunisia and Sicily was recovered. The lake is located in the coastal infra-Mediterranean vegetation belt at 2 m a.s.l. Pollen, charcoal and sedimentological analyses are used to explore linkages among vegetation, fire and climate at a decadal scale over the past 1200 years. A dry period from ad 800 to 1000 that corresponds to the Medieval Warm Period' (WMP) is inferred from sedimentological analysis. The high content of carbonate recorded in this period suggests a dry phase, when the ratio of evaporation/precipitation was high. During this period the island was dominated by thermophilous and drought-tolerant taxa, such as Quercus ilex, Olea, Pistacia and Juniperus. A marked shift in the sediment properties is recorded at ad 1000, when carbonate content became very low suggesting wetter conditions until ad 1850-1900. Broadly, this period coincides with the Little Ice Age' (LIA), which was characterized by wetter and colderA new sedimentary sequence from Lago di Venere on Pantelleria Island, located in the Strait of Sicily between Tunisia and Sicily was recovered. The lake is located in the coastal infra-Mediterranean vegetation belt at 2 m a.s.l. Pollen, charcoal and sedimentological analyses are used to explore linkages among vegetation, fire and climate at a decadal scale over the past 1200 years. A dry period from ad 800 to 1000 that corresponds to the Medieval Warm Period' (WMP) is inferred from sedimentological analysis. The high content of carbonate recorded in this period suggests a dry phase, when the ratio of evaporation/precipitation was high. During this period the island was dominated by thermophilous and drought-tolerant taxa, such as Quercus ilex, Olea, Pistacia and Juniperus. A marked shift in the sediment properties is recorded at ad 1000, when carbonate content became very low suggesting wetter conditions until ad 1850-1900. Broadly, this period coincides with the Little Ice Age' (LIA), which was characterized by wetter and colder conditions in Europe. During this time rather mesic conifers (i.e. Pinus pinaster), shrubs and herbs (e.g. Erica arborea and Selaginella denticulata) expanded, whereas more drought-adapted species (e.g. Q. ilex) declined. Charcoal data suggest enhanced fire activity during the LIA probably as a consequence of anthropogenic burning and/or more flammable fuel (e.g. resinous Pinus biomass). The last century was characterized by a shift to high carbonate content, indicating a change towards drier conditions, and re-expansion of Q. ilex and Olea. The post-LIA warming is in agreement with historical documents and meteorological time series. Vegetation dynamics were co-determined by agricultural activities on the island. Anthropogenic indicators (e.g. Cerealia-type, Sporormiella) reveal the importance of crops and grazing on the island. Our pollen data suggest that extensive logging caused the local extinction of deciduous Quercus pubescens around ad1750.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Camilla Calo, Paul D. Henne, Patricia EugsterORCiD, Jacqueline van Leeuwen, Adrian Gilli, Yvonne Hamann, Tommaso La Mantia, Salvatore Pasta, Elisa Vescovi, Willy Tinner
DOI:https://doi.org/10.1177/0959683613493935
ISSN:0959-6836
ISSN:1477-0911
Title of parent work (English):The Holocene : an interdisciplinary journal focusing on recent environmental change
Publisher:Sage Publ.
Place of publishing:London
Publication type:Article
Language:English
Year of first publication:2013
Publication year:2013
Release date:2017/03/26
Tag:"Little Ice Age' (LIA); "Medieval Warm Period' (MWP); Pinus pinaster; Quercus ilex; Quercus pubescens; central Mediterranean; fire history; vegetation history
Volume:23
Issue:10
Number of pages:10
First page:1477
Last Page:1486
Funding institution:Swiss National Science Foundation [PP00P2-114886]
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.