The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 61 of 10117
Back to Result List

Critical states of seismicity : modeling and data analysis

Kritische Zustände seismischer Dynamik : Modellierung und Datenanalyse

  • The occurrence of earthquakes is characterized by a high degree of spatiotemporal complexity. Although numerous patterns, e.g. fore- and aftershock sequences, are well-known, the underlying mechanisms are not observable and thus not understood. Because the recurrence times of large earthquakes are usually decades or centuries, the number of such events in corresponding data sets is too small to draw conclusions with reasonable statistical significance. Therefore, the present study combines both, numerical modeling and analysis of real data in order to unveil the relationships between physical mechanisms and observational quantities. The key hypothesis is the validity of the so-called "critical point concept" for earthquakes, which assumes large earthquakes to occur as phase transitions in a spatially extended many-particle system, similar to percolation models. New concepts are developed to detect critical states in simulated and in natural data sets. The results indicate that important features of seismicity like the frequency-sizeThe occurrence of earthquakes is characterized by a high degree of spatiotemporal complexity. Although numerous patterns, e.g. fore- and aftershock sequences, are well-known, the underlying mechanisms are not observable and thus not understood. Because the recurrence times of large earthquakes are usually decades or centuries, the number of such events in corresponding data sets is too small to draw conclusions with reasonable statistical significance. Therefore, the present study combines both, numerical modeling and analysis of real data in order to unveil the relationships between physical mechanisms and observational quantities. The key hypothesis is the validity of the so-called "critical point concept" for earthquakes, which assumes large earthquakes to occur as phase transitions in a spatially extended many-particle system, similar to percolation models. New concepts are developed to detect critical states in simulated and in natural data sets. The results indicate that important features of seismicity like the frequency-size distribution and the temporal clustering of earthquakes depend on frictional and structural fault parameters. In particular, the degree of quenched spatial disorder (the "roughness") of a fault zone determines whether large earthquakes occur quasiperiodically or more clustered. This illustrates the power of numerical models in order to identify regions in parameter space, which are relevant for natural seismicity. The critical point concept is verified for both, synthetic and natural seismicity, in terms of a critical state which precedes a large earthquake: a gradual roughening of the (unobservable) stress field leads to a scale-free (observable) frequency-size distribution. Furthermore, the growth of the spatial correlation length and the acceleration of the seismic energy release prior to large events is found. The predictive power of these precursors is, however, limited. Instead of forecasting time, location, and magnitude of individual events, a contribution to a broad multiparameter approach is encouraging.show moreshow less
  • Das Auftreten von Erdbeben zeichnet sich durch eine hohe raumzeitliche Komplexität aus. Obwohl zahlreiche Muster, wie Vor- und Nachbeben bekannt sind, weiß man wenig über die zugrundeliegenden Mechanismen, da diese sich direkter Beobachtung entziehen. Die Zeit zwischen zwei starken Erdbeben in einer seismisch aktiven Region beträgt Jahrzehnte bis Jahrhunderte. Folglich ist die Anzahl solcher Ereignisse in einem Datensatz gering und es ist kaum möglich, allein aus Beobachtungsdaten statistisch signifikante Aussagen über deren Eigenschaften abzuleiten. Die vorliegende Arbeit nutzt daher numerische Modellierungen einer Verwerfungszone in Verbindung mit Datenanalyse, um die Beziehung zwischen physikalischen Mechanismen und beobachteter Seismizität zu studieren. Die zentrale Hypothese ist die Gültigkeit des sogenannten "kritischen Punkt Konzeptes" für Seismizität, d.h. starke Erdbeben werden als Phasenübergänge in einem räumlich ausgedehnten Vielteilchensystem betrachtet, ähnlich wie in Modellen aus der statistischen Physik (z.B.Das Auftreten von Erdbeben zeichnet sich durch eine hohe raumzeitliche Komplexität aus. Obwohl zahlreiche Muster, wie Vor- und Nachbeben bekannt sind, weiß man wenig über die zugrundeliegenden Mechanismen, da diese sich direkter Beobachtung entziehen. Die Zeit zwischen zwei starken Erdbeben in einer seismisch aktiven Region beträgt Jahrzehnte bis Jahrhunderte. Folglich ist die Anzahl solcher Ereignisse in einem Datensatz gering und es ist kaum möglich, allein aus Beobachtungsdaten statistisch signifikante Aussagen über deren Eigenschaften abzuleiten. Die vorliegende Arbeit nutzt daher numerische Modellierungen einer Verwerfungszone in Verbindung mit Datenanalyse, um die Beziehung zwischen physikalischen Mechanismen und beobachteter Seismizität zu studieren. Die zentrale Hypothese ist die Gültigkeit des sogenannten "kritischen Punkt Konzeptes" für Seismizität, d.h. starke Erdbeben werden als Phasenübergänge in einem räumlich ausgedehnten Vielteilchensystem betrachtet, ähnlich wie in Modellen aus der statistischen Physik (z.B. Perkolationsmodelle). Es werden praktische Konzepte entwickelt, die es ermöglichen, kritische Zustände in simulierten und in beobachteten Daten sichtbar zu machen. Die Resultate zeigen, dass wesentliche Eigenschaften von Seismizität, etwa die Magnitudenverteilung und das raumzeitliche Clustern von Erdbeben, durch Reibungs- und Bruchparameter bestimmt werden. Insbesondere der Grad räumlicher Unordnung (die "Rauhheit") einer Verwerfungszone hat Einfluss darauf, ob starke Erdbeben quasiperiodisch oder eher zufällig auftreten. Dieser Befund zeigt auf, wie numerische Modelle genutzt werden können, um den Parameterraum für reale Verwerfungen einzugrenzen. Das kritische Punkt Konzept kann in synthetischer und in beobachteter Seismizität verifiziert werden. Dies artikuliert sich auch in Vorläuferphänomenen vor großen Erdbeben: Die Aufrauhung des (unbeobachtbaren) Spannungsfeldes führt zu einer Skalenfreiheit der (beobachtbaren) Größenverteilung; die räumliche Korrelationslänge wächst und die seismische Energiefreisetzung wird beschleunigt. Ein starkes Erdbeben kann in einem zusammenhängenden Bruch oder in einem unterbrochenen Bruch (Vorbeben und Hauptbeben) stattfinden. Die beobachtbaren Vorläufer besitzen eine begrenzte Prognosekraft für die Auftretenswahrscheinlichkeit starker Erdbeben - eine präzise Vorhersage von Ort, Zeit, und Stärke eines nahenden Erdbebens ist allerdings nicht möglich. Die genannten Parameter erscheinen eher vielversprechend als Beitrag zu einem umfassenden Multiparameteransatz für eine verbesserte zeitabhängige Gefährdungsabschätzung.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Gert Zöller
URN:urn:nbn:de:kobv:517-opus-7427
Advisor:Jürgen Kurths
Document Type:Habilitation
Language:English
Year of Completion:2005
Publishing Institution:Universität Potsdam
Date of final exam:2006/05/11
Release Date:2006/06/14
Tag:data analysis; earthquake prediction; mathematical modeling; seismicity; statistical physics
GND Keyword:Seismizität; Erdbebenvorhersage; statistische Physik; mathematische Modellierung; Datenanalyse
RVK - Regensburg Classification:TI 02200
RVK - Regensburg Classification:UG 1080
RVK - Regensburg Classification:UG 3100
RVK - Regensburg Classification:UT 2100
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik