• search hit 21 of 0
Back to Result List

Identifying sensitive areas to wind erosion in the xilingele grassland by computational fluid dynamics modelling

  • In order to identify the areas in the Xilingele grassland which are sensitive to wind erosion, a computational fluid dynamics model (CFD-WEM) was used to simulate the wind fields over a region of 37 km(2) which contains different topography and land use types. Previous studies revealed the important influences of topography and land use on wind erosion in the Xilingele grassland. Topography influences wind fields at large scale, and land use influences wind fields near the ground. Two steps were designed to implement the CFD wind simulation, and they were respectively to simulate the influence of topography and surface roughness on the wind. Digital elevation model (DEM) and surface roughness length were the key inputs for the CFD simulation. The wind simulation by CFD-WEM was validated by a wind data set which was measured simultaneously at six positions in the field. Three scenarios with different wind velocities were designed based on observed dust storm events, and wind fields were simulated according to these scenarios to predictIn order to identify the areas in the Xilingele grassland which are sensitive to wind erosion, a computational fluid dynamics model (CFD-WEM) was used to simulate the wind fields over a region of 37 km(2) which contains different topography and land use types. Previous studies revealed the important influences of topography and land use on wind erosion in the Xilingele grassland. Topography influences wind fields at large scale, and land use influences wind fields near the ground. Two steps were designed to implement the CFD wind simulation, and they were respectively to simulate the influence of topography and surface roughness on the wind. Digital elevation model (DEM) and surface roughness length were the key inputs for the CFD simulation. The wind simulation by CFD-WEM was validated by a wind data set which was measured simultaneously at six positions in the field. Three scenarios with different wind velocities were designed based on observed dust storm events, and wind fields were simulated according to these scenarios to predict the sensitive areas to wind erosion. General assumptions that cropland is the most sensitive area to wind erosion and heavily and moderately grazed grasslands are both sensitive etc. can be refined by the modelling of CFD-WEM. Aided by the results of this study, the land use planning and protection measures against wind erosion can be more efficient. Based on the case study in the Xilingele grassland, a method of regional wind erosion assessment aided by CFD wind simulation is summarized. The essence of this method is a combination of CFD wind simulation and determination of threshold wind velocity for wind erosion. Because of the physically-based simulation and the flexibility of the method, it can be generalised to other regions.show moreshow less

Export metadata

Additional Services

Search Google Scholar Statistics
Metadaten
Author details:Zhuodong Zhang, Ralf Wieland, Matthias Reiche, Roger FunkORCiD, Carsten Hoffmann, Yong Li, Michael SommerORCiDGND
DOI:https://doi.org/10.1016/j.ecoinf.2011.12.002
ISSN:1574-9541
Title of parent work (English):Ecological informatics : an international journal on ecoinformatics and computational ecolog
Publisher:Elsevier
Place of publishing:Amsterdam
Publication type:Article
Language:English
Year of first publication:2012
Publication year:2012
Release date:2017/03/26
Tag:Computational fluid dynamics; Grassland; Sensitive areas; Surface roughness; Wind erosion
Volume:8
Issue:5
Number of pages:11
First page:37
Last Page:47
Funding institution:German Research Foundation (DFG)
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Geowissenschaften
Peer review:Referiert
Institution name at the time of the publication:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Erd- und Umweltwissenschaften
Accept ✔
This website uses technically necessary session cookies. By continuing to use the website, you agree to this. You can find our privacy policy here.