• search hit 1 of 1
Back to Result List

Akustische Resonatoren zur Analyse und Kontrolle von schwingungsfähigen Systemen am Beispiel von Streichinstrumenten und Dielektrischen Elastomeraktoren

Acoustic resonators for the analysis and control of vibrational systems exemplified by bowed string instruments and dielectric elastomer actuators

  • Die Klangeigenschaften von Musikinstrumenten werden durch das Zusammenwirken der auf ihnen anregbaren akustischen Schwingungsmoden bestimmt, welche sich wiederum aus der geometrischen Struktur des Resonators in Kombination mit den verwendeten Materialien ergeben. In dieser Arbeit wurde das Schwingungsverhalten von Streichinstrumenten durch den Einsatz minimal-invasiver piezoelektrischer Polymerfilmsensoren untersucht. Die studierten Kopplungsphänomene umfassen den sogenannten Wolfton und Schwingungstilger, die zu dessen Abschwächung verwendet werden, sowie die gegenseitige Beeinflussung von Bogen und Instrument beim Spielvorgang. An Dielektrischen Elastomeraktormembranen wurde dagegen der Einfluss der elastischen Eigenschaften des Membranmaterials auf das akustische und elektromechanische Schwingungsverhalten gezeigt. Die Dissertation gliedert sich in drei Teile, deren wesentliche Ergebnisse im Folgenden zusammengefasst werden. In Teil I wurde die Funktionsweise eines abstimmbaren Schwingungstilgers zur Dämpfung von Wolftönen aufDie Klangeigenschaften von Musikinstrumenten werden durch das Zusammenwirken der auf ihnen anregbaren akustischen Schwingungsmoden bestimmt, welche sich wiederum aus der geometrischen Struktur des Resonators in Kombination mit den verwendeten Materialien ergeben. In dieser Arbeit wurde das Schwingungsverhalten von Streichinstrumenten durch den Einsatz minimal-invasiver piezoelektrischer Polymerfilmsensoren untersucht. Die studierten Kopplungsphänomene umfassen den sogenannten Wolfton und Schwingungstilger, die zu dessen Abschwächung verwendet werden, sowie die gegenseitige Beeinflussung von Bogen und Instrument beim Spielvorgang. An Dielektrischen Elastomeraktormembranen wurde dagegen der Einfluss der elastischen Eigenschaften des Membranmaterials auf das akustische und elektromechanische Schwingungsverhalten gezeigt. Die Dissertation gliedert sich in drei Teile, deren wesentliche Ergebnisse im Folgenden zusammengefasst werden. In Teil I wurde die Funktionsweise eines abstimmbaren Schwingungstilgers zur Dämpfung von Wolftönen auf Streichinstrumenten untersucht. Durch Abstimmung der Resonanzfrequenz des Schwingungstilgers auf die Wolftonfrequenz kann ein Teil der Saitenschwingungen absorbiert werden, so dass die zu starke Anregung der Korpusresonanz vermieden wird, die den Wolfton verursacht. Der Schwingungstilger besteht aus einem „Wolftöter“, einem Massestück, welches auf der Nachlänge der betroffenen Saite (zwischen Steg und Saitenhalter) installiert wird. Hier wurde gezeigt, wie die Resonanzen dieses Schwingungstilgers von der Masse des Wolftöters und von dessen Position auf der Nachlänge abhängen. Aber auch die Geometrie des Wolftöters stellte sich als ausschlaggebend heraus, insbesondere bei einem nicht-rotationssymmetrischen Wolftöter: In diesem Fall entsteht – basierend auf den zu erwartenden nicht-harmonischen Moden einer massebelasteten Saite – eine zusätzliche Mode, die von der Polarisationsrichtung der Saitenschwingung abhängt. Teil II der Dissertation befasst sich mit Elastomermembranen, die als Basis von Dielektrischen Elastomeraktoren dienen, und die wegen der Membranspannung auch akustische Resonanzen aufweisen. Die Ansprache von Elastomeraktoren hängt unter anderem von der Geschwindigkeit der elektrischen Anregung ab. Die damit zusammenhängenden viskoelastischen Eigenschaften der hier verwendeten Elastomere, Silikon und Acrylat, wurden einerseits in einer frequenzabhängigen dynamisch-mechanischen Analyse des Elastomers erfasst, andererseits auch optisch an vollständigen Aktoren selbst gemessen. Die höhere Viskosität des Acrylats, das bei tieferen Frequenzen höhere Aktuationsdehnungen als das Silikon zeigt, führt zu einer Verminderung der Dehnungen bei höheren Frequenzen, so dass über etwa 40 Hertz mit Silikon größere Aktuationsdehnungen erreicht werden. Mit den untersuchten Aktoren konnte die Gitterkonstante weicher optischer Beugungsgitter kontrolliert werden, die als zusätzlicher Film auf der Membran installiert wurden. Über eine Messung der akustischen Resonanzfrequenz von Elastomermebranen aus Acrylat in 1Abhängigkeit von ihrer Vorstreckung konnte in Verbindung mit einer Modellierung des hyperelastischen Verhaltens des Elastomers (Ogden-Modell) der Schermodul bestimmt werden. Schließlich wird in Teil III die Untersuchung von Geigen und ihrer Streichanregung mit Hilfe minimal-invasiver piezoelektrischer Polymerfilme geschildert. Es konnten am Bogen und am Steg von Geigen – unter den beiden Füßen des Stegs – jeweils zwei Filmsensoren installiert werden. Mit den beiden Sensoren am Steg wurden Frequenzgänge von Geigen gemessen, welche eine Bestimmung der frequenzabhängigen Stegbewegung erlaubten. Diese Methode ermöglicht damit auch eine umfassende Charakterisierung der Signaturmoden in Bezug auf die Stegdynamik. Die Ergebnisse der komplementären Methoden von Impulsanregung und natürlichem Spielen der Geigen konnten dank der Sensoren verglichen werden. Für die Nutzung der Sensoren am Bogen – insbesondere für eine Messung des Bogendrucks – wurde eine Kalibrierung des Bogen-Sensor-Systems mit Hilfe einer Materialprüfmaschine durchgeführt. Bei einer Messung während des natürlichen Spielens wurde mit den Sensoren am Bogen einerseits die Übertragung der Saitenschwingung auf den Bogen festgestellt. Dabei konnten außerdem longitudinale Bogenhaarresonanzen identifiziert werden, die von der Position der Saite auf dem Bogen abhängen. Aus der Analyse dieses Phänomens konnte die longitudinale Wellengeschwindigkeit der Bogenhaare bestimmt werden, die eine wichtige Größe für die Kopplung zwischen Saite und Bogen ist. Mit Hilfe des Systems aus Sensoren an Bogen und Steg werden auf Grundlage der vorliegenden Arbeit Studien an Streichinstrumenten vorgeschlagen, in denen die Bespielbarkeit der Instrumente zu den jeweils angeregten Steg- und Bogenschwingungen in Beziehung gesetzt werden kann. Damit könnte nicht zuletzt auch die bisher nicht vollständig geklärte Rolle des Bogens für Klang und Bespielbarkeit besser beurteilt werdenshow moreshow less
  • The sound of musical instruments is created by the interaction of their vibrational modes, which are a result of the geometrical structure and the material used in a certain instrument. In this thesis, the vibrations of bowed string instruments are studied by means of minimally-invasive polymer-film sensors. The investigated coupling phenomena comprise the wolf tone and the wolf-tone absorbers as well as the mutual interference between the bow and the instrument during playing. In a methodically related study, the acoustical and mechanical behaviour of dielectric elastomer actuators was examined, with a focus on the influence of the elastic membrane material and settings on the actuation and the resonator properties. The dissertation is arranged into three parts, the main findings of which are summarised in the following. In part I, the working principle of a tunable vibration absorber for the attenuation of wolf tones on bowed string instruments is investigated. By tuning the resonance frequency of the vibration absorber toThe sound of musical instruments is created by the interaction of their vibrational modes, which are a result of the geometrical structure and the material used in a certain instrument. In this thesis, the vibrations of bowed string instruments are studied by means of minimally-invasive polymer-film sensors. The investigated coupling phenomena comprise the wolf tone and the wolf-tone absorbers as well as the mutual interference between the bow and the instrument during playing. In a methodically related study, the acoustical and mechanical behaviour of dielectric elastomer actuators was examined, with a focus on the influence of the elastic membrane material and settings on the actuation and the resonator properties. The dissertation is arranged into three parts, the main findings of which are summarised in the following. In part I, the working principle of a tunable vibration absorber for the attenuation of wolf tones on bowed string instruments is investigated. By tuning the resonance frequency of the vibration absorber to match the wolf-tone frequency, a part of the string vibrations can be absorbed. Thus, a strong excitation of the body mode, which causes the wolf, can be avoided. The vibration absorber consists of a piece of mass, the wolf suppressor, which is installed on the afterlength of the concerned string (between the bridge and the tailpiece). It is shown here how the resonances of this vibration-absorber system depend on the mass and the position of the wolf suppressor on the afterlength. Moreover, also the geometry of the suppressor was found to play a role, especially in the case of a suppressor that is not axially symmetric: Then, based on the non-harmonic modes that can be expected for a mass-loaded string, an additional mode is created that depends on the polarisation of the string vibrations. The second part of the thesis deals with elastomer membranes that serve as the basis of dielectric elastomer actuators. In these systems, acoustical resonances can also be observed, due to the membrane tension. Among other things, the response of elastomer actuators also depends on the velocity of the electric excitation. The corresponding viscoelastic properties of the elastomers that are studied in this work, silicone and acrylic, were captured by two kinds frequency-response measurements. On the one hand, a dynamic-mechanical analysis with varied frequency was carried out on the pure elastomers; on the other hand, the performance of the assembled actuators was measured with a high-speed camera. The high viscosity of the acrylic, which shows larger actuation strains than the silicone at lower frequencies, leads to a reduction of strains at higher frequencies so that above 40 Hz, the silicone-based actuators achieve larger actuation strains. The investigated actuators were used to control soft diffraction gratings on the actuator membrane. By measuring the acoustical resonance frequency of acrylic elastomer membranes at different pre-stretches, the shear modulus of the material could be determined on the basis of the Ogden hyperelastic material law. Finally, in part III, an investigation of violins and their interactions with the bow is described in which minimally-invasive piezoelectric polymer films are used for vibration detection. Two film sensors were installed, respectively, on the bow and under the bridge 1of violins. With the two sensors under the bridge feet, the frequency response of violins was recorded, by which the frequency-dependent bridge motions could be determined. This method allows for a comprehensive characterisation of the signature modes with respect to the bridge dynamics. The results of the complementary methods of impulse excitation and natural playing of the violin could be compared owing to the sensors. To use the sensors on the bow – in particular, for a measurement of the bow force – the bow-sensor system was calibrated with the help of a materials testing machine. With the sensors on the bow, the transfer of string vibrations to the bow during normal playing could be captured. In the same measurement, longitudinal bow-hair resonances were identified which depend on the position of the string on the bow. The analysis of this phenomenon yielded the longitudinal wave velocity on the bow hair, an important factor for the string-bow coupling. Using the described system of sensors on the bow and the violin, further studies are proposed, in particular to relate the playability of bowed string instruments to the simultaneous bow and string vibrations. Thus, the yet incompletely fathomed role of the bow for sound and playability could be more comprehensively assessed.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Gunnar GidionORCiD
URN:urn:nbn:de:kobv:517-opus4-411772
Advisor:Reimund Gerhard-Multhaupt
Document Type:Doctoral Thesis
Language:German
Year of first Publication:2018
Year of Completion:2018
Publishing Institution:Universität Potsdam
Granting Institution:Universität Potsdam
Date of final exam:2018/04/30
Release Date:2018/06/20
Tag:Dielektrische Elastomeraktoren; Ferroelektrete; Geige; Physik der Musikinstrumente; Piezoelektrische Sensoren; Schwingungstilger; musikalische Akustik
dynamic vibration absorber; ferroelectrets; musical acoustics; physics of musical instruments; piezoelectric sensors; violin
Pagenumber:190
RVK - Regensburg Classification:UF 6700, UV 5200
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät / Institut für Physik und Astronomie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
MSC Classification:74-XX MECHANICS OF DEFORMABLE SOLIDS
PACS Classification:60.00.00 CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY
Licence (German):License LogoKeine Nutzungslizenz vergeben - es gilt das deutsche Urheberrecht