• search hit 1 of 4
Back to Result List

Energetic equivalence underpins the size structure of tree and phytoplankton communities

  • The size structure of autotroph communities – the relative abundance of small vs. large individuals – shapes the functioning of ecosystems. Whether common mechanisms underpin the size structure of unicellular and multicellular autotrophs is, however, unknown. Using a global data compilation, we show that individual body masses in tree and phytoplankton communities follow power-law distributions and that the average exponents of these individual size distributions (ISD) differ. Phytoplankton communities are characterized by an average ISD exponent consistent with three-quarter-power scaling of metabolism with body mass and equivalence in energy use among mass classes. Tree communities deviate from this pattern in a manner consistent with equivalence in energy use among diameter size classes. Our findings suggest that whilst universal metabolic constraints ultimately underlie the emergent size structure of autotroph communities, divergent aspects of body size (volumetric vs. linear dimensions) shape the ecological outcome of metabolicThe size structure of autotroph communities – the relative abundance of small vs. large individuals – shapes the functioning of ecosystems. Whether common mechanisms underpin the size structure of unicellular and multicellular autotrophs is, however, unknown. Using a global data compilation, we show that individual body masses in tree and phytoplankton communities follow power-law distributions and that the average exponents of these individual size distributions (ISD) differ. Phytoplankton communities are characterized by an average ISD exponent consistent with three-quarter-power scaling of metabolism with body mass and equivalence in energy use among mass classes. Tree communities deviate from this pattern in a manner consistent with equivalence in energy use among diameter size classes. Our findings suggest that whilst universal metabolic constraints ultimately underlie the emergent size structure of autotroph communities, divergent aspects of body size (volumetric vs. linear dimensions) shape the ecological outcome of metabolic scaling in forest vs. pelagic ecosystems.show moreshow less

Download full text files

  • pmnr684.pdfeng
    (3111KB)

    SHA-1: f50c5b1437629b15fbfe6e544f68c67a93f5fafb

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author:Daniel M. PerkinsORCiD, Andrea PernaORCiD, Rita AdrianORCiDGND, Pedro CermeñoORCiD, Ursula GaedkeORCiD, Maria Huete-Ortega, Ethan P. White, Gabriel Yvon-DurocherORCiD
URN:urn:nbn:de:kobv:517-opus4-425695
DOI:https://doi.org/10.25932/publishup-42569
ISSN:1866-8372
Parent Title (English):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe
Series (Serial Number):Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe (684)
Document Type:Postprint
Language:English
Date of first Publication:2019/03/15
Year of Completion:2019
Publishing Institution:Universität Potsdam
Release Date:2019/03/15
Tag:abundance; allometry; biomass; cell-size; distributions; forest structure; general quantitative theory; marine-phytoplankton; metabolic ecology; scaling relationships
Issue:684
Pagenumber:8
Source:Nature Communications 10 (2019), Art. 255 DOI 10.1038/s41467-018-08039-3
Organizational units:Mathematisch-Naturwissenschaftliche Fakultät
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
Peer Review:Referiert
Publication Way:Open Access
Licence (German):License LogoCreative Commons - Namensnennung, Weitergabe zu gleichen Bedingungen 4.0 International